Open Access

Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses


Cite

Andreadis, K.M., Lettenmaier, D.P., 2006. Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour., 29, 872-886. DOI: 10.1016/j.advwatres.2005.08.004.10.1016/j.advwatres.2005.08.004Open DOISearch in Google Scholar

Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snowdominated regions. Nature 438, 303-309. DOI: 10.1038/nature04141.10.1038/04141Open DOISearch in Google Scholar

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L.M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Moran-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., Vincent, C., 2017. The European mountain cryosphere: A review of past, current and future issues. Cryosphere Discuss, 2017, 1-60. DOI: 10.5194/tc-2016-290.10.5194/tc-2016-290Open DOISearch in Google Scholar

Bernsteinová, J., Bässler, C., Zimmermann, L., Langhammer, J., Beudert, B., 2015. Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. J. Hydrol. Hydromech., 63, 342-352. DOI: 10.1515/joh.h-2015-0037.10.1515/joh.h-2015-0037Open DOISearch in Google Scholar

Clark, M.P., Hendrikx, J., Slater, A.G., Kavetski, D., Anderson, B., Cullen, N.J., Kerr, T., Hreinsson, E. Ö., Woods, R.A., 2011. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res., 47, 7. DOI:10.1029/2011WR010745.10.1029/2011WR010745Open DOISearch in Google Scholar

Coron, L., Perrin, C., Michel, C., Andréassian, V., Brigode, P., Delaigue, O., Le Moine, N., Mathevet, T., Mouelhi, S., Oudin, L., Pushpalatha, R., Thirel, G., Valéry, A., 2017a. airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling. R package version 1.0.5.12. IRSTEA, Antony, France. https://irsteadoc.irstea.fr/cemoa/PUB00052697Search in Google Scholar

Coron, L., Thirel, G., Delaigue, O., Perrin, C., Andréassian, V., 2017b. The suite of lumped GR hydrological models in an R package. Environ. Model. Softw., 94, 166-171. DOI: 10.1016/j.envsoft.2017.05.002.10.1016/j.envsoft.2017.05.002Open DOISearch in Google Scholar

Da Ronco, P., De Michele, C., 2014. Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrol. Earth Syst. Sci., 18, 4579-4600. DOI: 10.5194/hess-18-4579-2014.10.5194/hess-18-4579-2014Open DOISearch in Google Scholar

Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., Güntner, A., 2014. The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia. Water Resour. Res., 50, 2002-2021. DOI: 10.1002/2013WR014382.10.1002/2013WR014382Open DOISearch in Google Scholar

Edijatno, Nascimento, N.D.O., Yang, X., Makhlouf, Z., Michel, C., 1999. GR3J: a daily watershed model with three free parameters. Hydrol. Sci. J., 44, 263-277. DOI: 10.1080/02626669909492221.10.1080/02626669909492221Open DOISearch in Google Scholar

Egli, L., Jonas, T., 2009. Hysteretic dynamics of seasonal snow depth distribution in the Swiss Alps. Geophys. Res. Lett., 36, L02501. DOI: 10.1029/2008GL035545.10.1029/2008GL035545Open DOISearch in Google Scholar

Essery, R., Pomeroy, J., 2004. Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: theoretical considerations. Ann. Glaciol., 38, 261-265. DOI: 10.3189/172756404781815275.10.3189/172756404781815275Open DOISearch in Google Scholar

Franz, K.J., Karsten, L.R., 2013. Calibration of a distributed snow model using MODIS snow covered area data. J. Hydrol., 494, 160-175. DOI: 10.1016/j.jhydrol.2013.04.026.10.1016/j.jhydrol.2013.04.026Open DOISearch in Google Scholar

Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc., 32, 675-701. DOI: 10.1080/01621459.1937.10503522.10.1080/01621459.1937.10503522Open DOISearch in Google Scholar

Gafurov, A., Bárdossy, A., 2009. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci., 13, 1361-1373. DOI: 10.5194/hess-13-1361-2009.10.5194/hess-13-1361-2009Open DOISearch in Google Scholar

Grayson, R.B., Blöschl, G., Western, A.W., McMahon, T.A., 2002. Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour., 25, 1313-1334. DOI: 10.1016/S0309-1708(02)00060-X.10.1016/S0309-1708(02)00060-XOpen DOISearch in Google Scholar

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 80-91. DOI: 10.1016/j.jhydrol.2009.08.003.10.1016/j.jhydrol.2009.08.003Open DOISearch in Google Scholar

Hall, D.K., Salomonson, V.V., Riggs, G.A., 2006. MODIS/Terra, MODIS/Aqua Snow Cover Daily L3 Global 500m Grid, Version 5. NASA National Snow and Ice Data Center, Boulder, Colorado, USA. DOI: 10.5067/63NQASRDPDB0.10.5067/63NQASRDPDB0Open DOISearch in Google Scholar

He, Z.H., Parajka, J., Tian, F.Q., Blöschl, G., 2014. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrol. Earth Syst. Sci., 18, 4773-4789. DOI: 10.5194/hess-18-4773-2014.10.5194/hess-18-4773-2014Open DOISearch in Google Scholar

Helbig, N., van Herwijnen, A., Magnusson, J., Jonas, T., 2015. Fractional snow-covered area parameterization over complex topography. Hydrol. Earth Syst. Sci., 19, 1339-1351. DOI: 10.5194/hess-19-1339-2015.10.5194/hess-19-1339-2015Open DOISearch in Google Scholar

Hublart, P., Ruelland, D., García de Cortázar-Atauri, I., Gascoin, S., Lhermitte, S., Ibacache, A., 2016. Reliability of lumped hydrological modeling in a semi-arid mountainous catchment facing water-use changes. Hydrol. Earth Syst. Sci., 20, 3691-3717. DOI: 10.5194/hess-20-3691-2016.10.5194/hess-20-3691-2016Open DOISearch in Google Scholar

Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol., 424-425, 264-277. DOI: 10.1016/j.jhydrol.2012.01.011.10.1016/j.jhydrol.2012.01.011Open DOISearch in Google Scholar

Kolberg, S.A., Gottschalk, L., 2006. Updating of snow depletion curve with remote sensing data. Hydrol. Process., 20, 2363-2380. DOI: 10.1002/hyp.6060.10.1002/hyp.6060Open DOISearch in Google Scholar

Krajčí, P., Holko, L., Perdigão, R.A.P.P., Parajka, J., 2014. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J. Hydrol., 519, 1769-1778. DOI: 10.1016/j.jhydrol.2014.08.064.10.1016/j.jhydrol.2014.08.064Open DOISearch in Google Scholar

Krajčí, P., Holko, L., Parajka, J., 2016. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001-2014. J. Hydrol. Hydromech., 64, 12-22. DOI: 10.1515/johh-2016-0011.10.1515/johh-2016-0011Open DOISearch in Google Scholar

Le Moine, N., Andréassian, V., Perrin, C., Michel, C., 2007. How can rainfall-runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments. Water Resour. Res., 43, W06428. DOI: 10.1029/2006WR005608.10.1029/2006WR005608Open DOISearch in Google Scholar

Liston, G.E., 2004. Representing subgrid snow cover heterogeneities in regional and global models. J. Clim., 17, 1381-1397. DOI: 10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2.10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2Open DOISearch in Google Scholar

Luce, C.H., Tarboton, D.G., 2004. The application of depletion curves for parameterization of subgrid variability of snow. Hydrol. Process., 18, 1409-1422. DOI: 10.1002/hyp.1420.10.1002/hyp.1420Open DOISearch in Google Scholar

Magand, C., Ducharne, A., Le Moine, N., Gascoin, S., 2014. Introducing hysteresis in snow depletion curves to improve the water budget of a land surface model in an Alpine catchment. J. Hydrometeorol., 15, 631-649. DOI: 10.1175/JHM-D-13-091.1.10.1175/JHM-D-13-091.1Open DOISearch in Google Scholar

Magnusson, J., Gustafsson, D., Hüsler, F., Jonas, T., 2014. Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resour. Res., 50, 7816-7835. DOI: 10.1002/2014WR015302.10.1002/2014WR015302Open DOISearch in Google Scholar

Martinec, J., Rango, A., 1986. Parameter values for snowmelt runoff modelling. J. Hydrol., 84, 197-219. DOI: 10.1016/0022- 1694(86)90123-X.10.1016/0022-1694(86)90123-XOpen DOISearch in Google Scholar

Nitta, T., Yoshimura, K., Takata, K., O’ishi, R., Sueyoshi, T., Kanae, S., Oki, T., Abe-Ouchi, A., Liston, G.E., 2014. Representing variability in subgrid snow cover and snow depth in a global land model: offline validation. J. Clim., 27, 3318-3330. DOI: 10.1175/JCLI-D-13-00310.1.10.1175/JCLI-D-13-00310.1Open DOISearch in Google Scholar

Niu, G.-Y., Yang, Z.-L., 2007. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res. Atmospheres, 112, D21101. DOI: 10.1029/2007JD008674.10.1029/2007JD008674Open DOISearch in Google Scholar

Parajka, J., Blöschl, G., 2008a. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol., 358, 240-258. DOI: 10.1016/j.jhydrol.2008.06.006.10.1016/j.jhydrol.2008.06.006Open DOISearch in Google Scholar

Parajka, J., Blöschl, G., 2008b. Spatio-temporal combination of MODIS images - potential for snow cover mapping. Water Resour. Res., 44, 3. DOI: 10.1029/2007WR006204.10.1029/2007WR006204Open DOISearch in Google Scholar

Parajka, J., Pepe, M., Rampini, A., Rossi, S., Blöschl, G., 2010. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol., 381, 203-212. DOI: 10.1016/j.jhydrol.2009.11.042.10.1016/j.jhydrol.2009.11.042Open DOISearch in Google Scholar

Parajka, J., Haas, P., Kirnbauer, R., Jansa, J., Blöschl, G., 2012. Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol. Process., 26, 3327-3337. DOI: 10.1002/hyp.8389.10.1002/hyp.8389Open DOISearch in Google Scholar

Perrin, C., Michel, C., Andréassian, V., 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol., 242, 275-301. DOI: 10.1016/S0022-1694(00)00393-0.10.1016/S0022-1694(00)00393-0Open DOISearch in Google Scholar

Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. J. Hydrol., 279, 275-289. DOI: 10.1016/S0022-1694(03)00225-7.10.1016/S0022-1694(03)00225-7Open DOISearch in Google Scholar

Poggio, L., Gimona, A., Brown, I., 2012. Spatio-temporal MODIS EVI gap filling under cloud cover: An example in Scotland. ISPRS J. Photogramm. Remote Sens., 72, 56-72. DOI: 10.1016/j.isprsjprs.2012.06.003.10.1016/j.isprsjprs.2012.06.003Open DOISearch in Google Scholar

Pokhrel, B.K., Chevallier, P., Andréassian, V., Tahir, A.A., Arnaud, Y., Neppel, L., Bajracharya, O.R., Budhathoki, K.P., 2014. Comparison of two snowmelt modelling approaches in the Dudh Koshi basin (eastern Himalayas, Nepal). Hydrol. Sci.J., 59, 1507-1518. DOI: 10.1080/02626667.2013.842282.10.1080/02626667.2013.842282Open DOISearch in Google Scholar

Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., Andréassian, V., 2011. A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. J. Hydrol., 411, 66-76. DOI: 10.1016/j.jhydrol.2011.09.034.10.1016/j.jhydrol.2011.09.034Open DOISearch in Google Scholar

Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., Canellas, C., Franchisteguy, L., Morel, S., 2008. Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J. Appl. Meteorol. Climatol., 47, 92-107. DOI: 10.1175/2007JAMC1636.1.10.1175/2007JAMC1636.1Open DOISearch in Google Scholar

Rodell, M., Houser, P.R., 2004. Updating a land surface model with MODIS-derived snow cover. J. Hydrometeorol., 5, 1064-1075. DOI: 10.1175/JHM-395.1.10.1175/JHM-395.1Open DOISearch in Google Scholar

Shrestha, M., Wang, L., Koike, T., Tsutsui, H., Xue, Y., Hirabayashi, Y., 2014. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remotesensing data. Hydrol. Earth Syst. Sci., 18, 747-761. DOI: 10.5194/hess-18-747-2014.10.5194/hess-18-747-2014Open DOISearch in Google Scholar

Slater, A.G., Clark, M.P., 2006. Snow data assimilation via an Ensemble Kalman Filter. J. Hydrometeorol., 7, 478-493. DOI: 10.1175/JHM505.1.10.1175/JHM505.1Open DOISearch in Google Scholar

Swenson, S.C., Lawrence, D.M., 2012. A new fractional snowcovered area parameterization for the Community Land Model and its effect on the surface energy balance. J. Geophys. Res. Atmospheres, 117. DOI:10.1029/2012JD018178.10.1029/2012JD018178Open DOISearch in Google Scholar

Thirel, G., Salamon, P., Burek, P., Kalas, M., 2013. Assimilation of MODIS snow cover area data in a distributed hydrological model using the particle filter. Remote Sens., 5, 5825-5850. DOI: 10.3390/rs5115825.10.3390/rs5115825Open DOISearch in Google Scholar

Thirel, G., Andréassian, V., Perrin, C., 2015a. On the need to test hydrological models under changing conditions. Hydrol. Sci. J., 60, 1165-1173. DOI: 10.1080/02626667.2015.1050027.10.1080/02626667.2015.1050027Open DOISearch in Google Scholar

Thirel, G., Andréassian, V., Perrin, C., Audouy, J.-N., Berthet, L., Edwards, P., Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland, D., Vaze, J., 2015b. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrol. Sci. J., 60, 1184-1199. DOI: 10.1080/02626667.2014.967248.10.1080/02626667.2014.967248Open DOISearch in Google Scholar

Troin, M., Arsenault, R., Brissette, F., 2015. Performance and uncertainty evaluation of snow models on snowmelt flow simulations over a nordic catchment (Mistassibi, Canada). Hydrology, 2, 289-317. DOI: 10.3390/hydrology2040289.10.3390/hydrology2040289Open DOISearch in Google Scholar

Troin, M., Poulin, A., Baraer, M., Brissette, F., 2016. Comparing snow models under current and future climates: Uncertainties and implications for hydrological impact studies. J. Hydrol., 540, 588-602. DOI: 10.1016/j.jhydrol.2016.06.055.10.1016/j.jhydrol.2016.06.055Open DOISearch in Google Scholar

Valéry, A., Andréassian, V., Perrin, C., 2014a. “As simple as possible but not simpler”: What is useful in a temperature-based snow-accounting routine? Part 1 - Comparison of six snow accounting routines on 380 catchments. J. Hydrol. 517, 1166-1175. DOI: 10.1016/j.jhydrol.2014.04.059.10.1016/j.jhydrol.2014.04.059Open DOISearch in Google Scholar

Valéry, A., Andréassian, V., Perrin, C., 2014b. “As simple as possible but not simpler”: What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. J. Hydrol., 517, 1176-1187. DOI: 10.1016/j.jhydrol.2014.04.058.10.1016/j.jhydrol.2014.04.058Open DOISearch in Google Scholar

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., Soubeyroux, J.-M., 2010. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int. J. Climatol., 30, 1627-1644. DOI: 10.1002/joc.2003.10.1002/joc.2003Open DOISearch in Google Scholar

Vuyovich, C.M., Jacobs, J.M., Daly, S.F., 2014. Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States. Water Resour. Res., 50, 11, 9088-9102. DOI: 10.1002/2013WR014734.10.1002/2013WR014734Open DOISearch in Google Scholar

Zaitchik, B.F., Rodell, M., 2009. Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J. Hydrometeorol., 10, 130-148. DOI: 10.1175/2008JHM1042.1.10.1175/2008JHM1042.1Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other