Open Access

Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka


Cite

Almendros, G., Guadalix, M.E., González-Vila, F.J., Martin, F., 1998. Distribution of structural units in humic substances as revealed by multi-step selective degradation and 13C-NMR of successive residues. Soil Biol. Biochem., 30, 755-765.10.1016/S0038-0717(97)00175-2Search in Google Scholar

Augris, N., Balesdent, J., Mariotti, A., Derenne, S., Largeau, C., 1998. Structure and origin of insoluble and non-hydrolizable, aliphatic organic matter in a forest soil. Organic Geochemistry, 28, 119-124.10.1016/S0146-6380(97)00094-6Search in Google Scholar

Bauters, T.W.J., DiCarlo, D.A., Steenhuis, T.S., Parlange, J.-Y., 1998. Preferential flow in water-repellent sands. Soil Sci. Soc. Am. J., 62, 1185-1190.10.2136/sssaj1998.03615995006200050005xSearch in Google Scholar

Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J., 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.10.1038/35041539Search in Google Scholar

Cregger, M.A., Sanders, N.J., Dunn, R.R., Classen, A.T., 2014. Microbial communities respond to experimental warming, but site matters. PeerJ 2:e358, doi.org/10.7717/peerj.35810.7717/peerj.358Search in Google Scholar

Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. 10.1038/nature04514Search in Google Scholar

de Jonge, L.W., Jacobsen, O.H., Moldrup, P., 1999. Soil water repellency: effects of water content, temperature, and particle size. Soil Sci. Soc. Am. J., 63, 437-442.10.2136/sssaj1999.03615995006300030003xSearch in Google Scholar

DeBano, L.F., 2000. Water repellency in soils: a historical overview. J. Hydrol., 231-232, 4-32.10.1016/S0022-1694(00)00180-3Search in Google Scholar

Derjaguin, B., Churaev, N., 1986. Properties of water layers adjacent to interfaces. In: Croxton, C.A. (Ed.): Fluid Interfacial Phenomena. Wiley, New York, pp. 663-738.Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth-Sci. Rev., 51, 33-65.10.1016/S0012-8252(00)00011-8Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Dekker, L.W., Ritsema, C.J., 2006. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci., 57, 741-754.10.1111/j.1365-2389.2006.00818.xSearch in Google Scholar

Goebel, M-O, Woche, S.K., Bachmann, J., Lamparter, A., Fischer, W.R., 2007. Significance of wettability-induced changes in microscopical water distribution for soil organic matter decomposition. Soil Sci. Soc. Am. J., 71, 1593-1599.10.2136/sssaj2006.0192Search in Google Scholar

Goebel, M.-O., Woche, S.K., Bachmann, J., 2009. Do soil aggregates really protect encapsulated organic matter against microbial decomposition? Biologia, 64, 443-448.10.2478/s11756-009-0065-zSearch in Google Scholar

Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition - is there a link to extreme climatic events? Glob. Change Biol., 17, 2640-2656.10.1111/j.1365-2486.2011.02414.xSearch in Google Scholar

González-Pérez, J.A., González-Vila, F.J., Polvillo, O., Almendros, G., Knicker, H., Salas, F., Costa, J.C., 2002. Wildfire and black carbon in Andalusian Mediterranean forest. In: Viegas, D.X. (Ed.): Forest Fire Research and Wildland Fire Safety. Millpress, Rotterdam, The Netherlands, pp. 1-7.Search in Google Scholar

Hartz, T.K., Mitchell, J.P., Giannini, C., 2000. Nitrogen and carbon mineralization dynamics of manures and composts. HortScience, 35, 209-212.10.21273/HORTSCI.35.2.209Search in Google Scholar

Janzen, H.H., Kucey, R.M.N., 1988. C, N and S mineralization of crop residue as influenced by crop species and nutrient regime. Plant and Soil, 100, 35-41.10.1007/BF02371192Search in Google Scholar

Jaramillo, D.F., Dekker, L.W., Ritsema, C.J., Hendrickx, J.M.H., 2000. Occurrence of soil water repellency in arid and humid climates. J. Hydrol., 231, 105-111.10.1016/S0022-1694(00)00187-6Search in Google Scholar

Jones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., Powlson, D., 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 11, 54-166.10.1111/j.1365-2486.2004.00885.xSearch in Google Scholar

Kaboneka, S., Sabbe, W.E., Mauromoustakos, A., 1997. Carbon decomposition kinetics and nitrogen mineralization from corn, soybean, and wheat residues. Communications in Soil Sci. Plant Anal., 28, 1359-1373.10.1080/00103629709369880Search in Google Scholar

Karhu, K., Fritze, H., Tuomi, M., Vanhala, P., Spetz, P., Kitunen, V., Liski, J., 2010. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biol. Biochem., 42, 72-82.10.1016/j.soilbio.2009.10.002Search in Google Scholar

King, P.M., 1981. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Aust. J. Soil Res., 19, 275-285.10.1071/SR9810275Search in Google Scholar

Kobayashi, M., Shimizu, T., 2007. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrol. Processes, 21, 2356-2364.10.1002/hyp.6754Search in Google Scholar

Lal, R., Follett, F., Stewart, B.A., Kimble, J.M., 2007. Soil carbon sequestration to mitigate climate change and advance food security. Soil Science, 172, 943-956.10.1097/ss.0b013e31815cc498Search in Google Scholar

Leelamanie, D.A.L., Karube, J., 2007. Effects of organic compounds, water content, and clay on water repellency of a model sandy soil. Soil Sci. Plant Nutr., 53, 711-719.10.1111/j.1747-0765.2007.00199.xSearch in Google Scholar

Leelamanie, D.A.L., Karube, J., 2014a. Water stable aggregates of Japanese Andisol as affected by hydrophobicity and drying temperature. J. Hydrol. Hydromech., 62, 2, 97-100.10.2478/johh-2014-0019Search in Google Scholar

Leelamanie, D.A.L., Karube, J., 2014b. Surface hydrophobicity of Japanese Andisol and its behavior upon exposure to heat.Soil Sci. Soc. Am. J., 78, 3, 761-766.10.2136/sssaj2013.11.0483nSearch in Google Scholar

Leelamanie, D.A.L., Karube, J., Samarawickrama, U.I., 2013. Stability analysis of aggregates in relation to the hydrophobicity of organic manure for Sri Lankan Red Yellow Podzolic soils. Soil Sci. Plant Nutr., 59, 5, 683-691.10.1080/00380768.2013.826568Search in Google Scholar

Lichner, L., Hallett, P.D., Feeney, D.S., Dugova, O., Sir, M., Tesar, M., 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia, 62, 537-541.10.2478/s11756-007-0106-4Search in Google Scholar

Lichner, L., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sandor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 4, 309-318.10.2478/v10098-012-0027-ySearch in Google Scholar

Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58-68.10.1016/j.catena.2012.02.016Search in Google Scholar

Marschner, B, Kalbitz, K., 2003. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113, 211-235.10.1016/S0016-7061(02)00362-2Search in Google Scholar

Mary, B., Fresneau, C., Morel, J.L., Mariotti, A., 1993. C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biol. Biochem., 25, 1005-1014.10.1016/0038-0717(93)90147-4Search in Google Scholar

National Atlas of Sri Lanka, 2007. National Atlas of Sri Lanka, 2nd ed., Survey Departmentof Sri Lanka, Colombo, Sri Lanka.Search in Google Scholar

Nelson, D.V., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L. (Ed.): Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America, Madison, WI, pp. 539-579.10.2134/agronmonogr9.2.2ed.c29Search in Google Scholar

Recous, S., Robin, D., Darwis, D., Mary, B., 1995. Soil inorganic N availability: effect on maize residue decomposition. Soil Biol. Biochem., 27, 1529-1538.10.1016/0038-0717(95)00096-WSearch in Google Scholar

Savage, S.M., Heaton, C., Osborn, J., Letey, J., 1972.Search in Google Scholar

Substances contributing to fire-induced water repellency in soils. Soil Sci. Soc. Am. Proc., 36, 674-678.10.2136/sssaj1972.03615995003600040047xSearch in Google Scholar

Spaccini, R., Piccolo, A., Haberhauer, G., Gerzabek, M.H., 2000. Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra. Eur. J. Soil Sci., 51, 583-594.10.1046/j.1365-2389.2000.00341.xSearch in Google Scholar

Spacini, R., Piccolo, A., Conte, P., Haberhauer, G., Gerzabek, M.H., 2002. Increased soil organic carbon sequestration though hydrophobic protection by humic substances. Soil Biol. Biochem., 34, 1839-1851.10.1016/S0038-0717(02)00197-9Search in Google Scholar

Thuriès, L., Pansu, M., Feller, C., Herrmann, P., Rémy, J.-C., 2001. Kinetics of added organic matter decomposition in a Mediterranean sandy soil. Soil Biol. Biochem., 33, 997-1010.10.1016/S0038-0717(01)00003-7Search in Google Scholar

Wallis, M.G., Horne, D.J., 1992. Soil water repellency. Advances in Soil Science, 20, 91-146.10.1007/978-1-4612-2930-8_2Search in Google Scholar

Whitford, W.G., 1996. The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity & Conservation, 5, 185-195. 10.1007/BF00055829Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other