Open Access

An object-oriented overland flow solver for watershed flood inundation predictions: case study of Ulus basin, Turkey


Cite

Anastasiou, K., Chan, C.T., 1997. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Int. J. Numer. Meth. Fluids, 24, 1225-1245.10.1002/(SICI)1097-0363(19970615)24:11<1225::AID-FLD540>3.0.CO;2-DSearch in Google Scholar

Audusse, E, Bristeau, M.O., 2005. A well-balanced positivity preserving ‘second-order’ scheme for shallow water flows on unstructured meshes. J. Comp. Phys., 206, 1, 311-333.10.1016/j.jcp.2004.12.016Search in Google Scholar

Bellos, C.V., Soulis, J.V., Sakkas, J.G., 1991. Computation of two-dimensional dam break induced flows. Adv. Water Resour., 14, 1, 31-41.10.1016/0309-1708(91)90028-MSearch in Google Scholar

Barth, T.J., Jespersen, D.C., 1989. The design and application of upwind schemes on unstructured meshes. The 27th Aerospace Science Meeting, Reno, Nevada, AIAA-89-0366.10.2514/6.1989-366Search in Google Scholar

Bellos, C.V., Soulis, J.V., Sakkas, J.G., 1992. Experimental investigation of two-dimensional dam-break induced flows. J. Hydr. Res., 30, 1, 47-63.10.1080/00221689209498946Search in Google Scholar

Bermudez, A., Vazquez, M.E., 1994. Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids, 23, 1049-1071.10.1016/0045-7930(94)90004-3Search in Google Scholar

Bradford, S.F., Sanders, B.F., 2002. Finite-volume model for shallow-water flooding of arbitrary topography. J. Hydr. Eng., 128, 3, 289-298.10.1061/(ASCE)0733-9429(2002)128:3(289)Search in Google Scholar

Brufau, P., Vazquez-Cendon, M.E., Garcia-Navarro, P., 2002. A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Meth. Fluids, 39, 247-275.10.1002/fld.285Search in Google Scholar

Brufau, P., Garcia-Navarro, P., Vazquez-Cendon, M.E., 2004. Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography. Int. J. Numer. Meth. Fluids, 45, 1047-1082.10.1002/fld.729Search in Google Scholar

Cea, L., French, J.R., Vazquez-Cendon, M.E., 2006. Numerical modeling of tidal flows tidal flows in complex estuaries including turbulence: an unstructured finite volume solver and experimental validation. Int. J. Numer. Meth. Fluids, 67, 1909-1932.10.1002/nme.1702Search in Google Scholar

Godunov, S., 1959. A divergence scheme for numerical computation of discontinuous solution of hydrodynamic equations. Math. Sbornik, 43, 271-306.Search in Google Scholar

Hubbard, M.F., Garcia-Navarro, P., 2000. Flux difference splitting and the balancing of source terms and flux gradients. J. Comp. Phys., 165, 89-125.10.1006/jcph.2000.6603Search in Google Scholar

Ivanov, V.Y., Vivoni, E.R., Bras, R.L., Entekhabi, D., 2004. Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour. Res., 40, W11102, 1-23.10.1029/2004WR003218Search in Google Scholar

Kettani, E.E.-C.B., Ouazar, D., 1994. Object-oriented finite volume dam-break model. In: Proceedings of Modeling of Flood Propagation over Initially Dry Areas, Milan, Italy, pp. 186-196.Search in Google Scholar

Kim, J., Ivanov, V.Y., Katopodes, N.D., 2013. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale. Water Resour. Res., 49, 5134-5154.10.1002/wrcr.20373Search in Google Scholar

LeVeque, R.J., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge.10.1017/CBO9780511791253Search in Google Scholar

Mackie, R., 1992. Object-oriented programming of the finite element method. Int. J. Numer. Meth. Fluids, 35, 2, 425-436.10.1002/nme.1620350212Search in Google Scholar

Malan, A.G., Lewis, R.W., 2004. On the development of highperformance C++ object-oriented code with application to an explicit edge-based fluid dynamics scheme. Computers and Fluids, 33, 1291-1304.10.1016/j.compfluid.2003.12.005Search in Google Scholar

Pan, D., Cheng, J.C., 1993. Upwind finite-volume Navier- Stokes computations on unstructured triangular meshes. AIAA J., 31, 9, 1618-1625.10.2514/3.11823Search in Google Scholar

Roe, P.L., 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys., 43, 357-372.10.1016/0021-9991(81)90128-5Search in Google Scholar

Rogers, B.D., Borthwick, A.G.L., Taylor, P.H., 2003. Mathematical balancing of flux gradient and source terms prior to use Roe’s approximate Riemann solver. J. Comp. Phys., 192, 422-451.10.1016/j.jcp.2003.07.020Search in Google Scholar

Simpson, B.R., 2003. C++ Classes for 2-D Unstructured Mesh Programming. INRIA Scientific Report, No. 3592, ISSN 0249-6399. ftp://ftp.inria.fr/INRIA/publication/publicpdf/RR/RR-3592.pdf Search in Google Scholar

Usul, N., Turan, B., 2006. Flood Analysis within the Ulus Basin, Turkey, using geographic information systems. Natural Hazards, 39, 2, 213-229.10.1007/s11069-006-0024-8Search in Google Scholar

Valiani, A., Begnudelli, L., 2006. Divergence form for bed slope source term (DFB) in shallow water equations. J. Hydr. Eng., 132, 7, 652-665.10.1061/(ASCE)0733-9429(2006)132:7(652)Search in Google Scholar

Ying, X., Wang, S.S.Y., 2008. Improved implementation of the HLL approximate Riemann solver for one-dimensional open channel flows. J. Hydr. Res., 46, 1, 21-34.10.1080/00221686.2008.9521840Search in Google Scholar

Zhao, D.H., Shen, H.W., Lai, J.S., Tabios, G.Q., 1996. Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling. J. Hydr. Eng., 122, 12, 692-702.10.1061/(ASCE)0733-9429(1996)122:12(692)Search in Google Scholar

Zoppou, C., Roberts, S., 2003. Explicit schemes for dam-break simulations. J. Hydr. Eng., 129, 1, 11-34.10.1061/(ASCE)0733-9429(2003)129:1(11)Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other