Open Access

The joint probability distribution of runoff and sediment and its change characteristics with multi-time scales


Cite

Balistrocchi, M., Bacchi, B., 2011. Modelling the statistical dependence of rainfall event variables through copula functions. Hydrol. Earth. Syst. Sci., 15, 6, 1959-1977.10.5194/hess-15-1959-2011Search in Google Scholar

Cherubini, U., Luciano, E., Vecchiato, W., 2004. Copula Methods in Finance. John Wiley, Chichester, UK.10.1002/9781118673331Search in Google Scholar

Chowdhary, H., Escobar, L., Singh, V.P., 2011. Identification of suitable copulas for bivariate frequency analysis of flood peaks and flood volumes. Hydrol. Res., 42, 2-3, 193-216.10.2166/nh.2011.065Search in Google Scholar

Compagnucci, R., Blanco, S.A., Figlioa, M.A. et a1., 2000. Variability in subtropical Andean Argentinean Atuel fiver: a wavelet approach. Environmetrics, 11, 251-269.10.1002/(SICI)1099-095X(200005/06)11:3<251::AID-ENV405>3.0.CO;2-0Search in Google Scholar

Correia, F.N., 1987. Multivariate partial duration series in flood risk analysis. In: Singh, V.P. (Ed.): Hydrologic Frequency Modelling. Reidel, Dordrecht, The Netherlands,pp.541-554.10.1007/978-94-009-3953-0_38Search in Google Scholar

Freund, J.E., 1961. A bivariate extension of the exponential distribution. J. Amer. Statist., 56, 971-977.10.1080/01621459.1961.10482138Search in Google Scholar

Ganguli, P., Reddy, M.J., 2013. Probabilistic assessment of flood risks using trivariate copulas. Theor. Appl. Climatol., 111, 1-2, 341-360.10.1007/s00704-012-0664-4Search in Google Scholar

Gaucherel, C., 2002. Use of wavelet transform for temporal characterization of remote watersheds. J. Hydrol., 269, 101-121.10.1016/S0022-1694(02)00212-3Search in Google Scholar

Goel, N.K., Seth, S.M., Chandra, S., 1998. Multivariate modeling of flood flows. J. Hydraulic. Eng., 124, 146-155.10.1061/(ASCE)0733-9429(1998)124:2(146)Search in Google Scholar

Grimaldi, S., Serinaldi, F., Napolitano, F. et al., 2005. A 3- copula function application for design hyetograph analysis. IAHS Publ., 293, 203-211.Search in Google Scholar

Gumbel, E.J., 1960. Bivariate exponential distributions. J. Am. Statist. Assoc., 55, 698-707.10.1080/01621459.1960.10483368Search in Google Scholar

Gumbel, E.J., Mustafi, C.K., 1967. Some analytical properties of bivariate extreme distributions. J. Am. Statist. Assoc., 62, 569-588.10.1080/01621459.1967.10482930Search in Google Scholar

Gyasi-Agyei, Y., 2012. Use of observed scaled daily storm profiles in a copula based rainfall disaggregation model. Adv. Water. Resour., 45, 26-26.10.1016/j.advwatres.2011.11.003Search in Google Scholar

Gyasi-Agyei, Y., Melching, C.S., 2012. Modelling the dependence and internal structure of storm events for continuous rainfall. J. Hydrol., 464-465, 249-261.10.1016/j.jhydrol.2012.07.014Search in Google Scholar

Han, Y.P., Jiang, R.F., Ruan, B.Q., 2007. Analysis on Wetnessdryness encountering of runoff flow between water source region and receiving water region in the middle route of the South-to-North Water Transfer Project. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 28, 8-11.Search in Google Scholar

Hashino, M., 1985. Formulation of the joint return period of two hydrologic variates associated with a Poisson process. J. Hydraulic. Eng., 3, 73-84.Search in Google Scholar

Huang, N.E., Shen, Z. et al., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London.10.1098/rspa.1998.0193Search in Google Scholar

Huang, N.E., Shen, Z., Long, S.R. et al., 1999. A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid. Mech., 31, 417-457.10.1146/annurev.fluid.31.1.417Search in Google Scholar

Kao, S.C., Govindaraju, R.S., 2010. A copula-based joint deficit index for droughts. J. Hydrol., 380, 121-134.10.1016/j.jhydrol.2009.10.029Search in Google Scholar

Labat, D., Ronchail, J., Callede, J. et a1., 2004. Wavelet analysis of Amazon hydrological regime variability. Geophys. Res. Lett., 31, 33-45.10.1029/2003GL018741Search in Google Scholar

Lian, J.J., Xu, K., Ma, C., 2013. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: A case study of Fuzhou City, China. Hydrol. Earth. Syst. Sci.,17, 2, 679-689.10.5194/hess-17-679-2013Search in Google Scholar

Liu, Z.M., Chen, Z.S., 2009. Risk study of the bivariate encounter of interzone rainstorm and flood level of the outer river. Adv. Water. Resour., 20, 619-625.Search in Google Scholar

Ma, M., Song, S., Ren, L., Jiang, S., Song, J., 2013. Multivariate drought characteristics using trivariate Gaussian and Student t copulas. Hydrol. Process., 27, 8, 1175-1190.10.1002/hyp.8432Search in Google Scholar

Nelsen, R.B., 1999. An Introduction to Copulas. Lecture Notes in Statistics 139. Springer, New York.10.1007/978-1-4757-3076-0Search in Google Scholar

Renard, B., Lang, M., 2007. Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Adv. Water. Resour., 30, 897-912.10.1016/j.advwatres.2006.08.001Search in Google Scholar

Salarpour, M., Yusop, Z., Yusof, F., Shahid, S., Jajarmizadeh, M., 2013. Flood frequency analysis based on t-copula for Johor River, Malaysia. J. Appl. Sci., 13, 7, 1021-1028.10.3923/jas.2013.1021.1028Search in Google Scholar

Salvatore, G., Francesco, S., 2006. Asymmetric copula in multivariate flood frequency analysis, Adv. Water. Resour., 29., 1155-1167.10.1016/j.advwatres.2005.09.005Search in Google Scholar

Singh, K., Singh, V.P., 1991. Derivation of bivariate probability density functions with exponential marginals. J. Stochastic. Hydrol., 5, 55-68.10.1007/BF01544178Search in Google Scholar

Wang, J., Meng, J.J., 2007. Research on runoff variations based on wavelet analysis and wavelet neural network model: A case study of the Heihe River drainage basin. J. Geog. Sci., 17, 327-338.10.1007/s11442-007-0327-zSearch in Google Scholar

Xiao, Y., Guo, S.L., Liu, P., 2008. Seasonal flood frequency analysis and flood prevention standard. Adv. Water. Resour., 19, 54-60.Search in Google Scholar

Xiong, L.H., Guo, S.G., Xiao, Y., 2005. Application of copulas to multivariate hydrological frequency analysis. Eng. J. Wuhan. U., 38, 16-19.Search in Google Scholar

Xu, Y.P., Li, J., Cao, F.F. et al., 2008. Applications of Copula in hydrological extreme analysis. J. Zhejiang U., 42, 1119-1122.Search in Google Scholar

Yan, B.W., Guo, S.G., Xiao, Y., 2007. Analysis on drought characteristics based on bivariate joint distribution. Arid. Zone. Res., 24, 537-542.Search in Google Scholar

Yue, S., 2000. Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls. Hydrol. Sci. J., 45, 315-326.10.1080/02626660009492327Search in Google Scholar

Yue, S., 2001. The Gumbel logistic model for representing a multivariate storm event. Adv. Water. Resour., 24, 179-85.10.1016/S0309-1708(00)00039-7Search in Google Scholar

Yue, S., Rasmussen, P., 2002. Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrol. Process., 16, 2881-2898.10.1002/hyp.1185Search in Google Scholar

Yue, S., Wang, C.Y., 2004. A comparison of two bivariate extreme value distributions. Stochastic. Environ. Res. Risk. Assess., 18, 61-69.10.1007/s00477-003-0124-xSearch in Google Scholar

Yue, S., Legendre, P., Bruneau, P., 1999. The Gumbel mixed model for flood frequency analysis. J. Hydrol., 226, 88-100.10.1016/S0022-1694(99)00168-7Search in Google Scholar

Zhang, L., Singh, V.P., 2007. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol., 332, 93-109.10.1016/j.jhydrol.2006.06.033Search in Google Scholar

Zhou, L.Y., Zhou, S.Z., Wang, F., 2005. Multi-time scales analysis of climate variation in Leizhou peninsula during 1951 to 2003. Journal of South China Normal University, 2, 43-51. Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other