Open Access

Gamma-ray-based measurement of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps


Cite

Hampel, U., Bieberle, A., Hoppe, D., Kronenberg, J., Schleicher, E., Sühnel, T., Zimmermann, F., Zippe, C., 2007. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications. Rev. Sci. Instrum., 78, 10, 103704-1 - 103704-9.10.1063/1.2795648Search in Google Scholar

Hampel, U., Wagner, M., 2011. A method for correct averaging in transmission radiometry. Meas. Sci. Technol., 22, 115701.10.1088/0957-0233/22/11/115701Search in Google Scholar

Hjertaker, B.T., Johansen, G.A., 2008. High speed gamma-ray tomography for hydrocarbon flow applications. An International Conference on the Applications of Computerized Tomography. AIP Conference Proceedings, 1050, 163-174.10.1063/1.2999985Search in Google Scholar

Gilbert, P., 1972. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol., 36, 1, 105-117.10.1016/0022-5193(72)90180-4Search in Google Scholar

Gillies, R.G., 1993. Pipeline Flow of Coarse Particle Slurries. PhD thesis. University of Saskatchewan, Saskatoon, Canada.Search in Google Scholar

Graham, L., Hamilton, R., Rudman, R., Strode, P., Pullum, L., 2002. Coarse solids concentration profiles in laminar pipe flows. Proceedings Hydrotransport 15. Banff, Canada, pp. 149-158.Search in Google Scholar

Kak, A.C., Slaney, M., 1988. Principles of Computerized Tomographic Imaging. IEEE Press.Search in Google Scholar

Krupička, J., Matoušek, V., 2012. Gamma-ray-based method for density sensing in pipes - evaluation of measurement and data processing. Proceedings of the 2nd IAHR Europe Congress, Munich, Germany.Search in Google Scholar

Lee, N.Y., Jung, S.H., Kim, J.B., 2009. Evaluation of the measurement geometries and data processing algorithms for industrial gamma tomography technology. Appl. Radiat. Isot., 67, 7-8, 1441-1444.10.1016/j.apradiso.2009.02.04619376727Search in Google Scholar

Matoušek, V., 1997. Flow Mechanism of Sand-Water Mixtures in Pipelines. Doctoral thesis. Delft University Press, Delft, The Netherlands.Search in Google Scholar

Matoušek, V., Krupička, J., Pěník, V., 2014. Distribution of medium-to-coarse glass beads in slurry pipe flow: evaluation of measured concentration profiles. Particul. Sci. Technol., 32, 2, 186-196.10.1080/02726351.2013.840706Search in Google Scholar

Nasr-el-din, H., Shook, C.A., Esmail, M.N., 1984. Isokinetic probe sampling from slurry pipelines. Can. J. Chem. Eng., 62, 179-185.10.1002/cjce.5450620204Search in Google Scholar

Pugh, F.J., 1995. Bed-Load Velocity and Concentration Profiles in High Shear Stress Flows. PhD thesis. Queen’s University at Kingston, Kingston, Canada.Search in Google Scholar

Przewlocki, K., Michalik, A., Korbel, K., Wolski, K., Parzonka, W., Sobota, J., Pac-Pomarnacka, A., 1979. A radiometric device for the determination of solids concentration distribution in a pipeline. Proceedings of Hydrotransport 6, Cantenbury, UK.Search in Google Scholar

Shook, C.A., Daniel, S.M. 1965. Flow of suspensions of solids in pipelines: Part I. Flow with a stable stationary deposit. Can. J. Chem. Eng., 43, 2, 56-61.Search in Google Scholar

Sutherland, A.P.N., Long, T.M., Randall, E.W., Wilkinson, A.J., 2008. Determining concentration and velocity profiles of non-Newtonian settling slurries using electrical resistance tomography. J. S. Afr. Inst. Min. Metall., 108, 10, 583-590.Search in Google Scholar

ISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other