Open Access

Finite element simulation of the impedance response of a vascular segment as a function of changes in electrode configuration


Cite

Alexander JF, Eggert S, Price D. Label-Free Monitoring of 3D Tissue Models via Electrical Impedance Spectroscopy. BIOREV. 2019;2:111–34. https://doi.org/10.1007/11663_2018_5 AlexanderJF EggertS PriceD Label-Free Monitoring of 3D Tissue Models via Electrical Impedance Spectroscopy BIOREV 2019 2 111 34 https://doi.org/10.1007/11663_2018_5 10.1007/11663_2018_5 Search in Google Scholar

Irons HR, Cullen DK, Shapiro NP, Lambert NA, Lee RH, LaPlaca MC. Three-dimensional neural constructs: A novel platform for neurophysiological investigation. J Neural Eng. 2008;5:333–41. https://doi.org/10.1088/1741-2560/5/3/006 IronsHR CullenDK ShapiroNP LambertNA LeeRH LaPlacaMC Three-dimensional neural constructs: A novel platform for neurophysiological investigation J Neural Eng 2008 5 333 41 https://doi.org/10.1088/1741-2560/5/3/006 10.1088/1741-2560/5/3/006 Search in Google Scholar

Gerasimenko T, Nikulin S, Zakharova G, Poloznikov A, Petrov V, Baranova A, et al. Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues. Bioeng Biotechnol. 2020;7:474. https://doi.org/10.3389/fbioe.2019.00474 GerasimenkoT NikulinS ZakharovaG PoloznikovA PetrovV BaranovaA Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues Bioeng Biotechnol 2020 7 474 https://doi.org/10.3389/fbioe.2019.00474 10.3389/fbioe.2019.00474 Search in Google Scholar

Maskarinec SA, Franck C, Tirrell DA, Ravichandran G. Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci USA. 2009;106:22108–13. https://doi.org/10.1073/pnas.0904565106 MaskarinecSA FranckC TirrellDA RavichandranG Quantifying cellular traction forces in three dimensions Proc Natl Acad Sci USA 2009 106 22108 13 https://doi.org/10.1073/pnas.0904565106 10.1073/pnas.0904565106 Search in Google Scholar

Friedl P, Zänker KS, Bröcker EB. Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech. 1998;43:369–78. https://doi.org/10.1002/(SICI)1097-0029(19981201)43:5<369::AID-JEMT3>3.0.CO;2-6 FriedlP ZänkerKS BröckerEB Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function Microsc Res Tech 1998 43 369 78 https://doi.org/10.1002/(SICI)1097-0029(19981201)43:5<369::AID-JEMT3>3.0.CO;2-6 10.1002/(SICI)1097-0029(19981201)43:5<369::AID-JEMT3>3.0.CO;2-6 Search in Google Scholar

Pedersen JA, Swartz MA. Mechanobiology in the third dimension. Ann Biomed Eng. 2005;33:1469–90. https://doi.org/10.1007/s10439-005-8159-4 PedersenJA SwartzMA Mechanobiology in the third dimension Ann Biomed Eng 2005 33 1469 90 https://doi.org/10.1007/s10439-005-8159-4 10.1007/s10439-005-8159-4 Search in Google Scholar

Kalmykov A, Huang C, Bliley J, Shiwarski D, Tashman J, Abdullah A, et al. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci Adv. 2019;5(8):eaax0729. https://doi.org/10.1126/sciadv.aax0729 KalmykovA HuangC BlileyJ ShiwarskiD TashmanJ AbdullahA Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids Sci Adv 2019 5 8 eaax0729 https://doi.org/10.1126/sciadv.aax0729 10.1126/sciadv.aax0729 Search in Google Scholar

Lin YP, Yu WC, Hsu TL, Ding PYA, Yang WC, Chen CH. The extracellular fluid-to-intracellular fluid volume ratio is associated with large-artery structure and function in hemodialysis patients. American Journal of Kidney Diseases. 2003;42(5):990–9. https://doi.org/10.1016/j.ajkd.2003.07.002 LinYP YuWC HsuTL DingPYA YangWC ChenCH The extracellular fluid-to-intracellular fluid volume ratio is associated with large-artery structure and function in hemodialysis patients American Journal of Kidney Diseases 2003 42 5 990 9 https://doi.org/10.1016/j.ajkd.2003.07.002 10.1016/j.ajkd.2003.07.002 Search in Google Scholar

Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of Medical Engineering. 2014;2014:381251. https://doi.org/10.1155/2014/381251 BeraTK Bioelectrical impedance methods for noninvasive health monitoring: a review Journal of Medical Engineering 2014 2014 381251. https://doi.org/10.1155/2014/381251 10.1155/2014/381251 Search in Google Scholar

Bera TK, Jampana N, Lubineau G. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling. Journal of Electrical Bioimpedance 2016;7(1):35–54. https://doi.org/10.5617/jeb.2978 BeraTK JampanaN LubineauG A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling Journal of Electrical Bioimpedance 2016 7 1 35 54 https://doi.org/10.5617/jeb.2978 10.5617/jeb.2978 Search in Google Scholar

Dean DA, Ramanathan T, Machado D, Sundararajan R. Electrical Impedance Spectroscopy Study of Biological Tissues. J Electrostat 2008;66(3–4):165–77. https://doi.org/10.1016/j.elstat.2007.11.005 DeanDA RamanathanT MachadoD SundararajanR Electrical Impedance Spectroscopy Study of Biological Tissues J Electrostat 2008 66 3–4 165 77 https://doi.org/10.1016/j.elstat.2007.11.005 10.1109/CEIDP.2006.311943 Search in Google Scholar

Pethig R. Dielectric properties of biological materials: Biophysical and medical applications. IEEE Trans Electr Insul. 1984;19:453–73. https://doi.org/10.1109/TEI.1984.298769 PethigR Dielectric properties of biological materials: Biophysical and medical applications IEEE Trans Electr Insul 1984 19 453 73 https://doi.org/10.1109/TEI.1984.298769 10.1109/TEI.1984.298769 Search in Google Scholar

Pethig R, Kell DB. The Passive electrical properties of biological systems: their significance in physiology, biophysics, and biotechnology. Phys Med Biol. 1987;32:933–70. https://doi.org/10.1088/0031-9155/32/8/001 PethigR KellDB The Passive electrical properties of biological systems: their significance in physiology, biophysics, and biotechnology Phys Med Biol 1987 32 933 70 https://doi.org/10.1088/0031-9155/32/8/001 10.1088/0031-9155/32/8/0013306721 Search in Google Scholar

Lingwood BE, Colditz PB, C. WL, editors. Biomedical applications of electrical impedance analysis. ISSPA '99 Proceedings of the Fifth International Symposium on Signal Processing and its Applications; 1999: IEEE Cat. No.99EX359. LingwoodBE ColditzPB CWL editors. Biomedical applications of electrical impedance analysis ISSPA '99 Proceedings of the Fifth International Symposium on Signal Processing and its Applications 1999 IEEE Cat. No.99EX359 Search in Google Scholar

Roy SK, Karal MAS, Kadir MA, Rabbani KS. A new six-electrode electrical impedance technique for probing deep organs in the human body. European Biophysics Journal. 2019;48:711–9. https://doi.org/10.1007/s00249-019-01396-x RoySK KaralMAS KadirMA RabbaniKS A new six-electrode electrical impedance technique for probing deep organs in the human body European Biophysics Journal 2019 48 711 9 https://doi.org/10.1007/s00249-019-01396-x 10.1007/s00249-019-01396-x31529144 Search in Google Scholar

Bera TK. Bioelectrical Impedance and The Frequency Dependent Current Conduction Through Biological Tissues: A Short Review. IOP Conf Series: Materials Science and Engineering 331: IOP Publishing; 2018. https://doi.org/10.1088/1757-899X/331/1/012005 BeraTK Bioelectrical Impedance and The Frequency Dependent Current Conduction Through Biological Tissues: A Short Review IOP Conf Series: Materials Science and Engineering 331 IOP Publishing 2018 https://doi.org/10.1088/1757-899X/331/1/012005 10.1088/1757-899X/331/1/012005 Search in Google Scholar

Martinsen ØG, Grimnes S, Schwan HP. Interface phenomena and dielectric properties of biological tissu. Encyclopedia of Surface and Colloid Science. 2002;20:2643–53. MartinsenØG GrimnesS SchwanHP Interface phenomena and dielectric properties of biological tissu Encyclopedia of Surface and Colloid Science 2002 20 2643 53 Search in Google Scholar

Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng. 2005;52:1295–302. https://doi.org/10.1109/TBME.2005.847523 FranksW SchenkerI SchmutzP HierlemannA Impedance characterization and modeling of electrodes for biomedical applications IEEE Trans Biomed Eng 2005 52 1295 302 https://doi.org/10.1109/TBME.2005.847523 10.1109/TBME.2005.84752316041993 Search in Google Scholar

Abdur Rahman AR, Price DT, Bhansali S. Effect of electrode geometry on the impedance evaluation of tissue and cell culture. Sensors Actuators B Chem. 2007;127:89–96. https://doi.org/10.1016/j.snb.2007.07.038 Abdur RahmanAR PriceDT BhansaliS Effect of electrode geometry on the impedance evaluation of tissue and cell culture Sensors Actuators B Chem 2007 127 89 96 https://doi.org/10.1016/j.snb.2007.07.038 10.1016/j.snb.2007.07.038 Search in Google Scholar

MacKay S, Hermansen P, Wishart D, Chen J. Simulations of interdigitated electrode interactions with gold nanoparticles for impedance-based biosensing applications. Sensors. 2015;15:22192–208. https://doi.org/10.3390/s150922192 MacKayS HermansenP WishartD ChenJ Simulations of interdigitated electrode interactions with gold nanoparticles for impedance-based biosensing applications Sensors 2015 15 22192 208 https://doi.org/10.3390/s150922192 10.3390/s150922192461043726364638 Search in Google Scholar

Hoffmann KP, Ruff R, Poppendieck W. Long-term characterization of electrode materials for surface electrodes in biopotential recording. International Conference of the IEEE Engineering in Medicine and Biology Society New York: IEEE; 2006. p. 2239–42. https://doi.org/10.1109/IEMBS.2006.260443 HoffmannKP RuffR PoppendieckW Long-term characterization of electrode materials for surface electrodes in biopotential recording International Conference of the IEEE Engineering in Medicine and Biology Society New York: IEEE 2006 2239 42 https://doi.org/10.1109/IEMBS.2006.260443 10.1109/IEMBS.2006.26044317945701 Search in Google Scholar

Riistama J, Lekkala J. Electrode-electrolyte interface properties in implantation conditions. International Conference of the IEEE Engineering in Medicine and Biology Society; New York: IEEE; 2006. p. 6021–4. https://doi.org/10.1109/IEMBS.2006.259712 RiistamaJ LekkalaJ Electrode-electrolyte interface properties in implantation conditions International Conference of the IEEE Engineering in Medicine and Biology Society New York: IEEE 2006 6021 4 https://doi.org/10.1109/IEMBS.2006.259712 10.1109/IEMBS.2006.25971217946736 Search in Google Scholar

Pliquett U, Frense D, Schönfeldt M, Frätzer C, Zhang Y, Cahill B, et al. Testing miniaturized electrodes for impedance measurements within the beta-dispersion - a practical approach. J Electr Bioimped. 2010;1:41–55. https://doi.org/10.5617/jeb.111 PliquettU FrenseD SchönfeldtM FrätzerC ZhangY CahillB Testing miniaturized electrodes for impedance measurements within the beta-dispersion - a practical approach J Electr Bioimped 2010 1 41 55 https://doi.org/10.5617/jeb.111 10.5617/jeb.111 Search in Google Scholar

Howlader MMR, Doyle TE, Mohtashami S, Kish JR. Charge transfer and stability of implantable electrodes on flexible substrate. Sensors Actuators B Chem. 2013;178:132–9. https://doi.org/10.1016/j.snb.2012.12.051 HowladerMMR DoyleTE MohtashamiS KishJR Charge transfer and stability of implantable electrodes on flexible substrate Sensors Actuators B Chem 2013 178 132 9 https://doi.org/10.1016/j.snb.2012.12.051 10.1016/j.snb.2012.12.051 Search in Google Scholar

Shinwari MW, Zhitomirsky D, Deen IA, Selvaganapathy PR, Deen MJ, Landheer D. Microfabricated reference electrodes and their biosensing applications. Sensors. 2010;10:1679–715. https://doi.org/10.3390/s100301679 ShinwariMW ZhitomirskyD DeenIA SelvaganapathyPR DeenMJ LandheerD Microfabricated reference electrodes and their biosensing applications Sensors 2010 10 1679 715 https://doi.org/10.3390/s100301679 10.3390/s100301679326444622294894 Search in Google Scholar

Polk BJ, Stelzenmuller A, Mijares G, MacCrehan W, Gaitan M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sensors and Actuators B: Chemical. 2006;114(1):239–47. https://doi.org/10.1016/j.snb.2005.03.121 PolkBJ StelzenmullerA MijaresG MacCrehanW GaitanM Ag/AgCl microelectrodes with improved stability for microfluidics Sensors and Actuators B: Chemical 2006 114 1 239 47 https://doi.org/10.1016/j.snb.2005.03.121 10.1016/j.snb.2005.03.121 Search in Google Scholar

Fosdick LE AJ. Optimization of microelectrode array geometry in a rectangular flow channel detector. Anal Chem. 1986;58(12):2481–5. https://doi.org/10.1021/ac00125a028 FosdickLE AJ Optimization of microelectrode array geometry in a rectangular flow channel detector Anal Chem 1986 58 12 2481 5 https://doi.org/10.1021/ac00125a028 10.1021/ac00125a028 Search in Google Scholar

Min J, Baeumner AJ. Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers. Electroanalysis. 2004;16(9):724–9. https://doi.org/10.1002/elan.200302872 MinJ BaeumnerAJ Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers Electroanalysis 2004 16 9 724 9 https://doi.org/10.1002/elan.200302872 10.1002/elan.200302872 Search in Google Scholar

Sandison ME, Anicet N, Glidle A, Cooper JM. Optimization of the geometry and porosity of microelectrode arrays for sensor design. Anal Chem. 2002;74(22):5717–25. https://doi.org/10.1021/ac025649w SandisonME AnicetN GlidleA CooperJM Optimization of the geometry and porosity of microelectrode arrays for sensor design Anal Chem 2002 74 22 5717 25 https://doi.org/10.1021/ac025649w 10.1021/ac025649w12463354 Search in Google Scholar

Lempka SF, Johnson MD, Barnett DW, Moffitt MA, Otto KJ, Kipke DR, et al. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Engineering in Medicine and Biology Society. EMBS'06 28th annual international conference of the IEEE; Piscataway: IEEE; 2006. https://doi.org/10.1109/IEMBS.2006.259432 LempkaSF JohnsonMD BarnettDW MoffittMA OttoKJ KipkeDR Optimization of microelectrode design for cortical recording based on thermal noise considerations. Engineering in Medicine and Biology Society EMBS'06 28th annual international conference of the IEEE Piscataway: IEEE 2006 https://doi.org/10.1109/IEMBS.2006.259432 10.1109/IEMBS.2006.25943217947023 Search in Google Scholar

Wang L, Wang H, Mitchelson K, Yu Z, Cheng J. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosens Bioelectron. 2008;24(1):14–21. https://doi.org/10.1016/j.bios.2008.03.018 WangL WangH MitchelsonK YuZ ChengJ Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors Biosens Bioelectron 2008 24 1 14 21 https://doi.org/10.1016/j.bios.2008.03.018 10.1016/j.bios.2008.03.01818511255 Search in Google Scholar

Tian B, Liu J, Dvir T, Jin L, Tsui JH, Qing Q, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater. 2012;11(11):986–94. https://doi.org/10.1038/nmat3404 TianB LiuJ DvirT JinL TsuiJH QingQ Macroporous nanowire nanoelectronic scaffolds for synthetic tissues Nat Mater 2012 11 11 986 94 https://doi.org/10.1038/nmat3404 10.1038/nmat3404362369422922448 Search in Google Scholar

Timko BP, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber CM. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009;9(2):914–8. https://doi.org/10.1021/nl900096z TimkoBP Cohen-KarniT YuG QingQ TianB LieberCM Electrical recording from hearts with flexible nanowire device arrays Nano Lett 2009 9 2 914 8 https://doi.org/10.1021/nl900096z 10.1021/nl900096z266385319170614 Search in Google Scholar

Viventi J, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med. 2010;2(24):24ra2. https://doi.org/10.1126/scitranslmed.3000738 ViventiJ A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology Sci Transl Med 2010 2 24 24ra2 https://doi.org/10.1126/scitranslmed.3000738 10.1126/scitranslmed.3000738303977420375008 Search in Google Scholar

Kim DH, et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Mater. 2011;10:316–23. https://doi.org/10.1038/nmat2971 KimDH Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy Nature Mater 2011 10 316 23 https://doi.org/10.1038/nmat2971 10.1038/nmat2971313257321378969 Search in Google Scholar

Kim DH, et al. Epidermal electronics. Science. 2011;333:838–43. https://doi.org/10.1126/science.1206157 KimDH Epidermal electronics Science 2011 333 838 43 https://doi.org/10.1126/science.1206157 10.1126/science.120615721836009 Search in Google Scholar

Viventi J, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neurosci. 2011;14:1599–605. https://doi.org/10.1038/nn.2973 ViventiJ Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo Nature Neurosci 2011 14 1599 605 https://doi.org/10.1038/nn.2973 10.1038/nn.2973323570922081157 Search in Google Scholar

Pettersen FJ, Høgetveit JO. From 3D tissue data to impedance using Simpleware ScanFE+IP and COMSOL Multiphysics - a tutorial. Journal of Electrical Bioimpedance. 2011;2:13–32. https://doi.org/10.5617/jeb.173 PettersenFJ HøgetveitJO From 3D tissue data to impedance using Simpleware ScanFE+IP and COMSOL Multiphysics - a tutorial Journal of Electrical Bioimpedance 2011 2 13 32 https://doi.org/10.5617/jeb.173 10.5617/jeb.173 Search in Google Scholar

Deford JF, Gandhi OP. An impedance method to calculate currents induced in biological bodies exposed to quasi-static electromagnetic fields. IEEE Trans Electr Comp 1985;EMC-27:168–73. https://doi.org/10.1109/TEMC.1985.304281 DefordJF GandhiOP An impedance method to calculate currents induced in biological bodies exposed to quasi-static electromagnetic fields IEEE Trans Electr Comp 1985 EMC-27 168 73 https://doi.org/10.1109/TEMC.1985.304281 10.1109/TEMC.1985.304281 Search in Google Scholar

Scaramuzza M, Ferrario A, De Toni A. Development of an innovative electrolytes characterization approach using a combined COMSOL/MATLAB/HSPICE system. PhD Research in Microelectronics and Electronics (PRIME): IEEE; 2010. ScaramuzzaM FerrarioA De ToniA Development of an innovative electrolytes characterization approach using a combined COMSOL/MATLAB/HSPICE system PhD Research in Microelectronics and Electronics (PRIME) IEEE 2010 Search in Google Scholar

Davis TA. Algorithm 832: UMFPACK V4.3---An unsymmetric-pattern multifrontal method. ACM Trans Math Softw. 2004;30:196–9. https://doi.org/10.1145/992200.992206 DavisTA Algorithm 832: UMFPACK V4.3---An unsymmetric-pattern multifrontal method ACM Trans Math Softw 2004 30 196 9 https://doi.org/10.1145/992200.992206 10.1145/992200.992206 Search in Google Scholar

Lichtenberg AJ. The quasi-static approximation for moving and finite temperature plasmas. IEEE Transactions on Electron Devices. 1964;11:62–5. https://doi.org/10.1109/T-ED.1964.15284 LichtenbergAJ The quasi-static approximation for moving and finite temperature plasmas IEEE Transactions on Electron Devices 1964 11 62 5 https://doi.org/10.1109/T-ED.1964.15284 10.1109/T-ED.1964.15284 Search in Google Scholar

Jin Y, Kumar S, Gerhard RA, editors. Simulation of the Impedance Response of Thin Films as a Function of Film Conductivity and Thickness. COMSOL conference; 2015; Boston. JinY KumarS GerhardRA editors Simulation of the Impedance Response of Thin Films as a Function of Film Conductivity and Thickness COMSOL conference 2015 Boston Search in Google Scholar

COMSOL, Multiphysics, Platform. Simulate Static and Low-Frequency Electromagnetics with the AC/DC Module [Available from: https://www.comsol.com/acdc-module]. COMSOL, Multiphysics, Platform Simulate Static and Low-Frequency Electromagnetics with the AC/DC Module [Available from: https://www.comsol.com/acdc-module]. Search in Google Scholar

Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41:2231–49. https://doi.org/10.1088/0031-9155/41/11/001 GabrielC GabrielS CorthoutE The dielectric properties of biological tissues: I. Literature survey Phys Med Biol 1996 41 2231 49 https://doi.org/10.1088/0031-9155/41/11/001 10.1088/0031-9155/41/11/0018938024 Search in Google Scholar

Olmo A, Yúfera A, editors. Computer simulation of microelectrode based bio-impedance measurements with COMSOL. Third International Conference on Biomedical Electronics and Devices; 2010; Valencia, Spain. OlmoA YúferaA editors Computer simulation of microelectrode based bio-impedance measurements with COMSOL Third International Conference on Biomedical Electronics and Devices 2010 Valencia, Spain Search in Google Scholar

Pettersen FJ. On sensitivity in transfer impedance measurements. Journal of Electrical Bioimpedance. 2018;9(1):159–62. https://doi.org/10.2478/joeb-2018-0020 PettersenFJ On sensitivity in transfer impedance measurements Journal of Electrical Bioimpedance 2018 9 1 159 62 https://doi.org/10.2478/joeb-2018-0020 10.2478/joeb-2018-0020785201533584931 Search in Google Scholar

Walker J, Halliday D, Resnick R. Fundamentals of physics. Hoboken. 10th ed. NJ: Wiley; 2014. WalkerJ HallidayD ResnickR Fundamentals of physics 10th ed. Hoboken, NJ Wiley 2014 Search in Google Scholar

Geselowitz DB. An application of electrocardiographic lead theory to impedance plethysmography. IEEE TransBiomedEng. 1971;18:38–41. https://doi.org/10.1109/TBME.1971.4502787 GeselowitzDB An application of electrocardiographic lead theory to impedance plethysmography IEEE TransBiomedEng 1971 18 38 41 https://doi.org/10.1109/TBME.1971.4502787 10.1109/TBME.1971.4502787 Search in Google Scholar

Grimnes S, Martinsen ØG. Bioimpedance & Bioelectricity Basics. 3rd ed: Elsevier Science; 2014. https://doi.org/10.1016/B978-0-12-411470-8.00011-8 GrimnesS MartinsenØG Bioimpedance & Bioelectricity Basics 3rd ed Elsevier Science 2014 https://doi.org/10.1016/B978-0-12-411470-8.00011-8 10.1016/B978-0-12-411470-8.00011-8 Search in Google Scholar

Dewarrat F, Falco L, Caduff A, Talary M, editors. Optimization of Skin Impedance Sensor Design with Finite Element Simulations Proceedings of the COMSOL Conference 2008; Hannover. DewarratF FalcoL CaduffA TalaryM editors Optimization of Skin Impedance Sensor Design with Finite Element Simulations Proceedings of the COMSOL Conference 2008 Hannover Search in Google Scholar