Cite

Aria S, Elfarri Y, Elvegård M, Gottfridsson A, Grønaas HS, et al. Measuring Blood Pulse Wave Velocity with Bioimpedance in Different Age Groups. Sensors 2019, 19, 4, 850 https://doi.org/10.3390/s19040850AriaSElfarriYElvegårdMGottfridssonAGrønaasHSet al.Measuring Blood Pulse Wave Velocity with Bioimpedance in Different Age GroupsSensors2019194850https://doi.org/10.3390/s1904085010.3390/s19040850Search in Google Scholar

Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. The Lancet. 2019, 394, 10201, P861-867 https://doi.org/10.1016/S0140-6736(19)31721-0AttiaZINoseworthyPALopez-JimenezFAsirvathamSJDeshmukhAJAn artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome predictionThe Lancet201939410201861867https://doi.org/10.1016/S0140-6736(19)31721-010.1016/S0140-6736(19)31721-0Search in Google Scholar

Benouar S, Hafid A, Attari M, Kedir-Talha M, Seoane F. Systematic variability in ICG recordings results in ICG complex subtypes – steps towards the enhancement of ICG characterization, J Electr Bioimp 2018, 9, 72–82 https://doi.org/10.2478/joeb-2018-0012BenouarSHafidAAttariMKedir-TalhaMSeoaneF.Systematic variability in ICG recordings results in ICG complex subtypes – steps towards the enhancement of ICG characterizationJ Electr Bioimp201897282https://doi.org/10.2478/joeb-2018-001210.2478/joeb-2018-0012Search in Google Scholar

Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med. 1986, 14, 10, 904–909. https://doi.org/10.1097/00003246-198610000-00017BernsteinDP.A new stroke volume equation for thoracic electrical bioimpedance: theory and rationaleCrit Care Med19861410904909https://doi.org/10.1097/00003246-198610000-0001710.1097/00003246-198610000-00017Search in Google Scholar

Bernstein DP. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations. J Electr Bioimp 2009, 1,1, 2–17 https://doi.org/10.5617/jeb.51BernsteinDP.Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equationsJ Electr Bioimp200911217https://doi.org/10.5617/jeb.5110.5617/jeb.51Search in Google Scholar

Bernstein DP. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations. J Electr Bioimp 2010, 1, 1, 2–17 https://doi.org/10.5617/jeb.51BernsteinDP.Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equationsJ Electr Bioimp201011217https://doi.org/10.5617/jeb.5110.5617/jeb.51Search in Google Scholar

Bouza E, Alvarado N, Alcalá L, Pérez MJ, Rincón C, Muñoz P, . A randomized and prospective study of 3 procedures for the diagnosis of catheter-related bloodstream infection without catheter withdrawal. Clin Infect Dis. 2007, 44, 6, 820–826 https://doi.org/10.1086/511865BouzaEAlvaradoNAlcaláLPérezMJRincónCMuñozP.A randomized and prospective study of 3 procedures for the diagnosis of catheter-related bloodstream infection without catheter withdrawalClin Infect Dis2007446820826https://doi.org/10.1086/51186510.1086/511865Search in Google Scholar

Carvalho P, Paiva RP, Henriques J, Antunes M, Quintal I, Muehlsteff J. Robust Characteristic Points for ICG - Definition and Comparative Analysis. Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, Rome, Italy, 26–29 January, 2011CarvalhoPPaivaRPHenriquesJAntunesMQuintalIMuehlsteffJ.Robust Characteristic Points for ICG - Definition and Comparative AnalysisProceedings of the International Conference on Bio-inspired Systems and Signal ProcessingRome, Italy26–29 January, 2011Search in Google Scholar

Chai P, Mohiaddin R. How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson. 2005, 7, 4, 705–716. https://doi.org/10.1081/jcmr-65639ChaiPMohiaddinR.How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mappingJ Cardiovasc Magn Reson200574705716https://doi.org/10.1081/jcmr-6563910.1081/JCMR-200065639Search in Google Scholar

Cybulski G. Impedance Cardiography. In: Ambulatory Impedance Cardiography. Lecture Notes in Electrical Engineering, vol 76. Springer, Berlin, Heidelberg, 2011CybulskiG.Impedance CardiographyAmbulatory Impedance Cardiography. Lecture Notes in Electrical Engineering76SpringerBerlin, Heidelberg201110.1007/978-3-642-11987-3_2Search in Google Scholar

Drazner M, Thompson B, Rosenberg PB, Kaiser PA, Boehrer JD, Baldwin BJ, Dries DL, Yancy CW, Comparison of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol, 2002, 89, 8, 993–995DraznerMThompsonBRosenbergPBKaiserPABoehrerJDBaldwinBJDriesDLYancyCWComparison of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathyAm J Cardiol200289899399510.1016/S0002-9149(02)02257-9Search in Google Scholar

Ermishkin VV, Kolesnikov VA, Lukoshkova EV, Mokh VP, Sonina RS, Dupik NV, Boitsov SA. Variable impedance cardiography waveforms: how to evaluate the preejection period more accurately. J Phys Conf Ser 407, 2012, 012016 https://doi.org/10.1088/1742-6596/407/1/012016ErmishkinVVKolesnikovVALukoshkovaEVMokhVPSoninaRSDupikNVBoitsovSA.Variable impedance cardiography waveforms: how to evaluate the preejection period more accuratelyJ Phys Conf Ser4072012012016 https://doi.org/10.1088/1742-6596/407/1/01201610.1088/1742-6596/407/1/012016Search in Google Scholar

Ermishkin VV, Kolesnikov VA, Lukoshkova EV. Age-dependent and 'pathologic' changes in ICG waveforms resulting from superposition of pre-ejection and ejection waves. Physiol Meas, 2014, 35, 6, 943–63 https://doi.org/10.1088/0967-3334/35/6/943ErmishkinVVKolesnikovVALukoshkovaEV.Age-dependent and 'pathologic' changes in ICG waveforms resulting from superposition of pre-ejection and ejection wavesPhysiol Meas201435694363https://doi.org/10.1088/0967-3334/35/6/94310.1088/0967-3334/35/6/94324846642Search in Google Scholar

Fegler G. Measurement of cardiac output in anesthetized animals by a thermo-dilution method. Q J Exp Physiol, 1954, 39, 153–164. https://doi.org/10.1113/expphysiol.1954.sp001067FeglerG.Measurement of cardiac output in anesthetized animals by a thermo-dilution methodQ J Exp Physiol195439153164https://doi.org/10.1113/expphysiol.1954.sp00106710.1113/expphysiol.1954.sp00106713194838Search in Google Scholar

Gershengorn HB, Wunsch H. Understanding changes in established practice: pulmonary artery catheter use in critically ill patients. Crit Care Med. 2013, 41, 12, 2667–76 https://doi.org/10.1097/CCM.0b013e318298a41eGershengornHBWunschH.Understanding changes in established practice: pulmonary artery catheter use in critically ill patientsCrit Care Med20134112266776https://doi.org/10.1097/CCM.0b013e318298a41e10.1097/CCM.0b013e318298a41e404756423978814Search in Google Scholar

Josteen A, Desebbe O, Suehiro K, Murphy LSL, Essiet M et al.. Accuracy and precision of non-invasive cardiac outputmonitoring devices in perioperative medicine: asystematic review and meta-analysis. Br J Anaesth, 2017, 118, 3, 298–310. https://doi.org/10.1093/bja/aew461JosteenADesebbeOSuehiroKMurphyLSLEssietMAccuracy and precision of non-invasive cardiac outputmonitoring devices in perioperative medicine: asystematic review and meta-analysisBr J Anaesth20171183298310https://doi.org/10.1093/bja/aew46110.1093/bja/aew46128203792Search in Google Scholar

Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH. Development and evaluation of an impedance cardiac output system. Aerosp Med. 1966, 37,12, 1208–1212KubicekWGKarnegisJNPattersonRPWitsoeDAMattsonRH.Development and evaluation of an impedance cardiac output systemAerosp Med1966371212081212Search in Google Scholar

Li J, Sun J, Song Y, Zhao J. Accelerating MRI reconstruction via three-dimensional dual-dictionary learning using CUDA. J Supercomput 2015, 71, 10, 2381–2396 https://doi.org/10.1007/s11227-015-1386-zLiJSunJSongYZhaoJ.Accelerating MRI reconstruction via three-dimensional dual-dictionary learning using CUDAJ Supercomput2015711023812396https://doi.org/10.1007/s11227-015-1386-z10.1007/s11227-015-1386-zSearch in Google Scholar

Liñares J. Diagnosis of catheter-related bloodstream infection: conservative techniques. Clin Infect Dis. 2007, 44, 6, 827–829 https://doi.org/10.1086/511885LiñaresJ.Diagnosis of catheter-related bloodstream infection: conservative techniquesClin Infect Dis.2007446827829https://doi.org/10.1086/51188510.1086/51188517304455Search in Google Scholar

Mansouri S, Alhadidi T, Chabchoub S, Ben Salah R. Impedance cardiography: recent applications and developments. Biomed Research, 2018, 29, 19, 3542–3552 https://doi.org/10.4066/biomedicalresearch.29-17-3479MansouriSAlhadidiTChabchoubSBen SalahR.Impedance cardiography: recent applications and developmentsBiomed Research2018291935423552https://doi.org/10.4066/biomedicalresearch.29-17-347910.4066/biomedicalresearch.29-17-3479Search in Google Scholar

Medina-Lezama J, Narvaez-Guerra O, Herrera-Enriquez K, Morey-Vargas OL, Bolaños-SalazarJF et al. Hemodynamic Patterns Identified by Impedance Cardiography Predict Mortality in the General Population: The PREVENCION Study J Am Heart Assoc. 2018, 7, 18 https://doi.org/10.1161/JAHA.118.009259Medina-LezamaJNarvaez-GuerraOHerrera-EnriquezKMorey-VargasOLBolaños-SalazarJFHemodynamic Patterns Identified by Impedance Cardiography Predict Mortality in the General Population: The PREVENCION StudyJ Am Heart Assoc.2018718https://doi.org/10.1161/JAHA.118.00925910.1161/JAHA.118.009259622296730371205Search in Google Scholar

Pan J, Tompkins WJ. A Real-Time QRS Detection Algorithm. IEEE Trans Biomed Eng. 1985, BME-32, 230–236 https://doi.org/10.1109/TBME.1985.325532PanJTompkinsWJ.A Real-Time QRS Detection AlgorithmIEEE Trans Biomed Eng1985BME-32230236https://doi.org/10.1109/TBME.1985.32553210.1109/TBME.1985.3255323997178Search in Google Scholar

Sakka SG. Hemodynamic monitoring in the critically ill patient – current status and perspective. Front Med. 2015, 2, 44, 1–6 https://doi.org/10.3389/fmed.2015.00044SakkaSG.Hemodynamic monitoring in the critically ill patient – current status and perspectiveFront Med201524416https://doi.org/10.3389/fmed.2015.0004410.3389/fmed.2015.00044452255826284244Search in Google Scholar

Sramek BB, Rose DM, Miyamoto A. Stroke volume equation with a linear base impedance model and its accuracy, as compared to thermodilution and magnetic flowmeter techniques in humans and animals. Paper presented at: The 6th International Conference on Electrical Bioimpedance, Zadar, Yugoslavia, 1983, 38SramekBBRoseDMMiyamotoA.Stroke volume equation with a linear base impedance model and its accuracy, as compared to thermodilution and magnetic flowmeter techniques in humans and animalsPaper presented at: The 6th International Conference on Electrical BioimpedanceZadar, Yugoslavia198338Search in Google Scholar

Sun Z. Aging, Arterial Stiffness and Hypertension. Hypertension. 2015, 65, 2, 252–256 https://doi.org/10.1161/HYPERTENSIONAHA.114.03617SunZ.Aging, Arterial Stiffness and HypertensionHypertension2015652252256https://doi.org/10.1161/HYPERTENSIONAHA.114.0361710.1161/HYPERTENSIONAHA.114.03617428897825368028Search in Google Scholar

Thiele RH, Bartels K, Gan TJ. Cardiac output monitoring, a contemporary assessment and review. Crit Care Med. 2015, 43, 1, 177–185. https://doi.org/10.1097/CCM.0000000000000608ThieleRHBartelsKGanTJ.Cardiac output monitoring, a contemporary assessment and reviewCrit Care Med2015431177185https://doi.org/10.1097/CCM.000000000000060810.1097/CCM.000000000000060825251758Search in Google Scholar

Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML. Impedance cardiography, the next vital sign technology. Chest. 2003, 123, 6, 2028–2033. https://doi.org/10.1378/chest.123.6.2028Van De WaterJMMillerTWVogelRLMountBEDaltonML.Impedance cardiography, the next vital sign technologyChest2003123620282033https://doi.org/10.1378/chest.123.6.202810.1378/chest.123.6.202812796185Search in Google Scholar

Van Eijnatten MAJM, van Rijssel MJ, Peters RJA, Verdaasdonk RM, Meijer JH. Comparison of cardiac time intervals between echocardiography and impedance cardiography at various heart rates. J Electr Bioimp. 2014, 5, 2–8Van EijnattenMAJMvan RijsselMJPetersRJAVerdaasdonkRMMeijerJH.Comparison of cardiac time intervals between echocardiography and impedance cardiography at various heart ratesJ Electr Bioimp201452810.5617/jeb.690Search in Google Scholar

Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, et al. The pulmonary artery catheter: in medio virtus. Crit Care Med. 2008, 36, 11, 3093–6. https://doi.org/10.1097/CCM.0b013e31818c10c7VincentJLPinskyMRSprungCLLevyMMariniJJPayenDThe pulmonary artery catheter: in medio virtusCrit Care Med2008361130936https://doi.org/10.1097/CCM.0b013e31818c10c710.1097/CCM.0b013e31818c10c718824901Search in Google Scholar

Young DW. What does an MRI scan cost? Healthc Financ Manage 2015, 69, 11, 46–49 https://doi.org/10.4172/2168-9784.1000.167YoungDW.What does an MRI scan cost?Healthc Financ Manage201569114649https://doi.org/10.4172/2168-9784.1000.167Search in Google Scholar