Cite

Chen KY, Shaparin N, Gritsenko K. Low back pain. In: Pain Medicine: An Essential Review. 2017. Epub 1. Chen KY, Shaparin N, Gritsenko K. Low back pain. In: Pain Medicine: An Essential Review. 2017. Epub ahead of print 2017. https://doi.org/10.1007/978-3-319-43133-8_121ChenKYShaparinNGritsenkoK.Low back painInPain Medicine: An Essential Review2017Epub 1. Chen KY, Shaparin N, Gritsenko K. Low back pain. In: Pain Medicine: An Essential Review. 2017. Epub ahead of print 2017. https://doi.org/10.1007/978-3-319-43133-8_12110.1007/978-3-319-43133-8_121Search in Google Scholar

Maher C, Underwood M, Buchbinder R. Non-specific low back pain. The Lancet. Epub ahead of print 2017. https://doi.org/10.1016/s0140-6736(16)30970-9MaherCUnderwoodMBuchbinderR.Non-specific low back painThe LancetEpub ahead of print 2017. https://doi.org/10.1016/s0140-6736(16)30970-910.1016/S0140-6736(16)30970-9Search in Google Scholar

Goubert D, Oosterwijck J Van, Meeus M, et al. Structural Changes of Lumbar Muscles in Non-Specific Low Back Pain. Pain Physician. 19(7), E985–E999.GoubertDOosterwijckJ VanMeeusMStructural Changes of Lumbar Muscles in Non-Specific Low Back PainPain Physician197E985E99910.36076/ppj/2016.19.E985Search in Google Scholar

Yamato TP, Maher CG, Saragiotto BT, et al. Pilates for low back pain. Sao Paulo Med J. Epub ahead of print 2016. https://doi.org/10.1590/1516-3180.20161344t1YamatoTPMaherCGSaragiottoBTPilates for low back painSao Paulo Med JEpub ahead of print 2016. https://doi.org/10.1590/1516-3180.20161344t110.1590/1516-3180.20161344T1Search in Google Scholar

Bogduk N. Management of chronic low back pain. Medical Journal of Australia, 180(2), 79–83.BogdukN.Management of chronic low back painMedical Journal of Australia1802798310.5694/j.1326-5377.2004.tb05805.xSearch in Google Scholar

Hayden JA, van Tulder MW, Malmivaara A, et al. Exercise therapy for treatment of non-specific low back pain. Cochrane database Syst Rev. Epub ahead of print 2005. https://doi.org/10.1002/14651858.cd000335.pub2HaydenJAvan TulderMWMalmivaaraAExercise therapy for treatment of non-specific low back painCochrane database Syst RevEpub ahead of print 2005. https://doi.org/10.1002/14651858.cd000335.pub210.1002/14651858.CD000335.pub2Search in Google Scholar

Chou R, Qaseem A, Snow V, et al. Diagnosis and treatment of low back pain: A joint clinical practice guideline from the American College of Physicians and the American Pain Society. Annals of Internal Medicine. Epub ahead of print 2007. https://doi.org/10.7326/0003-4819-147-7-200710020-00006ChouRQaseemASnowVDiagnosis and treatment of low back pain: A joint clinical practice guideline from the American College of Physicians and the American Pain SocietyAnnals of Internal MedicineEpub ahead of print 2007. https://doi.org/10.7326/0003-4819-147-7-200710020-0000610.7326/0003-4819-147-7-200710020-00006Search in Google Scholar

Chang W-D, Lin H-Y, Lai P-T. Core strength training for patients with chronic low back pain. J Phys Ther Sci. Epub ahead of print 2015. https://doi.org/10.1589/jpts.27.619ChangW-DLinH-YLaiP-T.Core strength training for patients with chronic low back painJ Phys Ther SciEpub ahead of print 2015. https://doi.org/10.1589/jpts.27.61910.1589/jpts.27.619Search in Google Scholar

Larivière C, Arsenault AB, Gravel D, et al. Surface electromyography assessment of back muscle intrinsic properties. J Electromyogr Kinesiol. Epub ahead of print 2003. https://doi.org/10.1016/s1050-6411(03)00039-7LarivièreCArsenaultABGravelDSurface electromyography assessment of back muscle intrinsic propertiesJ Electromyogr KinesiolEpub ahead of print 2003. https://doi.org/10.1016/s1050-6411(03)00039-710.1016/S1050-6411(03)00039-7Search in Google Scholar

Kamaz M, Kireşi D, Oǧuz H, et al. CT measurement of trunk muscle areas in patients with chronic low back pain. Diagnostic Interv Radiol, 13(3), 144–148.KamazMKireşiDOǧuzHCT measurement of trunk muscle areas in patients with chronic low back painDiagnostic Interv Radiol133144148Search in Google Scholar

Kjaer P, Bendix T, Sorensen JS, et al. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med. Epub ahead of print 2007. https://doi.org/10.1186/1741-7015-5-2KjaerPBendixTSorensenJSAre MRI-defined fat infiltrations in the multifidus muscles associated with low back pain?BMC MedEpub ahead of print 2007. https://doi.org/10.1186/1741-7015-5-210.1186/1741-7015-5-2179689317254322Search in Google Scholar

Lee H Il, Song J, Lee HS, et al. Association between Cross-sectional Areas of Lumbar Muscles on Magnetic Resonance Imaging and Chronicity of Low Back Pain. Ann Rehabil Med. Epub ahead of print 2012. https://doi.org/10.5535/arm.2011.35.6.852LeeH IlSongJLeeHSAssociation between Cross-sectional Areas of Lumbar Muscles on Magnetic Resonance Imaging and Chronicity of Low Back PainAnn Rehabil MedEpub ahead of print 2012. https://doi.org/10.5535/arm.2011.35.6.85210.5535/arm.2011.35.6.852330939322506214Search in Google Scholar

Fortin M, Gibbons LE, Videman T, et al. Do variations in paraspinal muscle morphology and composition predict low back pain in men? Scand J Med Sci Sport. Epub ahead of print 2015. https://doi.org/10.1111/sms.12301FortinMGibbonsLEVidemanTDo variations in paraspinal muscle morphology and composition predict low back pain in men?Scand J Med Sci SportEpub ahead of print 2015. https://doi.org/10.1111/sms.1230110.1111/sms.1230125134643Search in Google Scholar

Sanchez B, Rutkove SB. Electrical Impedance Myography and Its Applications in Neuromuscular Disorders. Neurotherapeutics 2017;14:107–18. https://doi.org/10.1007/s13311-016-0491-xSanchezBRutkoveSBElectrical Impedance Myography and Its Applications in Neuromuscular DisordersNeurotherapeutics20171410718https://doi.org/10.1007/s13311-016-0491-x10.1007/s13311-016-0491-x523363327812921Search in Google Scholar

Shefner JM, Rutkove SB, Caress JB, et al. Assessing ALS progression with a dedicated electrical impedance myography system. Amyotroph Lateral Scler Frontotemporal Degener;(in press), 14(10), E0223265 https://doi.org/10.1080/21678421.2018.1510008ShefnerJMRutkoveSBCaressJBAssessing ALS progression with a dedicated electrical impedance myography systemAmyotroph Lateral Scler Frontotemporal Degener(in press)1410E0223265 https://doi.org/10.1080/21678421.2018.151000810.1080/21678421.2018.1510008643877930265154Search in Google Scholar

Rutkove SB, Kapur K, Zaidman CM, et al. Electrical impedance myography for assessment of Duchenne muscular dystrophy. Ann Neurol 2017;81:622–32. https://doi.org/10.1002/ana.24874RutkoveSBKapurKZaidmanCMElectrical impedance myography for assessment of Duchenne muscular dystrophyAnn Neurol20178162232https://doi.org/10.1002/ana.2487410.1002/ana.24874544498028076894Search in Google Scholar

Li Z, Chen L, Zhu Y, et al. Handheld Electrical Impedance Myography Probe for Assessing Carpal Tunnel Syndrome. Ann Biomed Eng 2017;45:1572–80. https://doi.org/10.1007/s10439-017-1819-3LiZChenLZhuYHandheld Electrical Impedance Myography Probe for Assessing Carpal Tunnel SyndromeAnn Biomed Eng201745157280https://doi.org/10.1007/s10439-017-1819-310.1007/s10439-017-1819-328361183Search in Google Scholar

Tarulli AW, Duggal N, Esper GJ, et al. Electrical Impedance Myography in the Assessment of Disuse Atrophy. Arch Phys Med Rehabil;90. Epub ahead of print 2009. https://doi.org/10.1016/j.apmr.2009.04.007.TarulliAWDuggalNEsperGJElectrical Impedance Myography in the Assessment of Disuse AtrophyArch Phys Med Rehabil90Epub ahead of print 2009. https://doi.org/10.1016/j.apmr.2009.04.007.10.1016/j.apmr.2009.04.007282983419801075Search in Google Scholar

Zweig, M., & Campbell, G. Receiver-Operating Characteristic (ROC) Plots- A Fundamental Evaluation Tool in Clinical Medicine. Clinical Chemistry, 39(4), 561–577.ZweigM.CampbellG.Receiver-Operating Characteristic (ROC) Plots- A Fundamental Evaluation Tool in Clinical MedicineClinical Chemistry39456157710.1093/clinchem/39.4.561Search in Google Scholar

Anderson DE, Bean JF, Holt NE, et al. Computed tomography-based muscle attenuation and electrical impedance myography as indicators of trunk muscle strength independent of muscle size in older adults. Am J Phys Med Rehabil 2014;93:553–61. https://doi.org/10.1097/phm.0000000000000059AndersonDEBeanJFHoltNEComputed tomography-based muscle attenuation and electrical impedance myography as indicators of trunk muscle strength independent of muscle size in older adultsAm J Phys Med Rehabil20149355361https://doi.org/10.1097/phm.000000000000005910.1097/PHM.0000000000000059410517724508931Search in Google Scholar

Iversen T, Solberg TK, Romner B, et al. Accuracy of physical examination for chronic lumbar radiculopathy. BMC Musculoskelet Disord. Epub ahead of print 2013. https://doi.org/10.1186/1471-2474-14-206IversenTSolbergTKRomnerBAccuracy of physical examination for chronic lumbar radiculopathyBMC Musculoskelet DisordEpub ahead of print 2013. https://doi.org/10.1186/1471-2474-14-20610.1186/1471-2474-14-206371691423837886Search in Google Scholar

Ekedahl H, Jönsson B, Annertz M, et al. Accuracy of Clinical Tests in Detecting Disk Herniation and Nerve Root Compression in Subjects With Lumbar Radicular Symptoms. Arch Phys Med Rehabil. Epub ahead of print 2018. https://doi.org/10.1016/j.apmr.2017.11.006EkedahlHJönssonBAnnertzMAccuracy of Clinical Tests in Detecting Disk Herniation and Nerve Root Compression in Subjects With Lumbar Radicular SymptomsArch Phys Med RehabilEpub ahead of print 2018. https://doi.org/10.1016/j.apmr.2017.11.00610.1016/j.apmr.2017.11.00629253501Search in Google Scholar

Kortman HG, Wilder SC, Geisbush TR, et al. Age- and gender-associated differences in electrical impedance values of skeletal muscle. Physiol Meas 2013;34:1611–22. https://doi.org/10.1088/0967-3334/34/12/1611KortmanHGWilderSCGeisbushTRAge- and gender-associated differences in electrical impedance values of skeletal musclePhysiol Meas201334161122https://doi.org/10.1088/0967-3334/34/12/161110.1088/0967-3334/34/12/1611389540124165434Search in Google Scholar

Arnold WD, Taylor RS, Li J, et al. Electrical impedance myography detects age-related muscle change in mice. PLoS One;12. Epub ahead of print 2017. https://doi.org/10.1371/journal.pone.0185614ArnoldWDTaylorRSLiJElectrical impedance myography detects age-related muscle change in micePLoS One12Epub ahead of print 2017. https://doi.org/10.1371/journal.pone.018561410.1371/journal.pone.0185614564813029049394Search in Google Scholar

Tarulli AW, Chin AB, Lee KS, et al. Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: An initial assessment. Clin Neurophysiol 2007;118:2393–7. https://doi.org/10.1016/j.clinph.2007.07.016TarulliAWChinABLeeKSImpact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: An initial assessmentClin Neurophysiol200711823937https://doi.org/10.1016/j.clinph.2007.07.01610.1016/j.clinph.2007.07.016208066417889597Search in Google Scholar

Jafarpoor M, Li J, White JK, et al. Optimizing electrode configuration for electrical impedance measurements of muscle via the finite element method. IEEE Trans Biomed Eng 2013;60:1446–52. https://doi.org/10.1109/tbme.2012.2237030JafarpoorMLiJWhiteJKOptimizing electrode configuration for electrical impedance measurements of muscle via the finite element methodIEEE Trans Biomed Eng201360144652https://doi.org/10.1109/tbme.2012.223703010.1109/TBME.2012.2237030398446923314763Search in Google Scholar

Sim4Life and SEMCAD X Platforms. (n.d.). Retrieved from https://zmt.swiss/sim4life/. Visited: 12.12.2019.Sim4Life and SEMCAD X Platforms(n.d.). Retrieved from https://zmt.swiss/sim4life/. Visited: 12.12.2019Search in Google Scholar

Hoy D, Brooks P, Blyth F, et al. The Epidemiology of low back pain. Best Practice and Research: Clinical Rheumatology. Epub ahead of print 2010. DOI: 10.1016/j.berh.2010.10.002.ahead of print 2017. https://doi.org/10.1007/978-3-319-43133-8_121.HoyDBrooksPBlythFThe Epidemiology of low back pain. Best Practice and ResearchClinical RheumatologyEpub ahead of print 2010. DOI: 10.1016/j.berh.2010.10.002.ahead of print 2017. https://doi.org/10.1007/978-3-319-43133-8_121.10.1007/978-3-319-43133-8_121Search in Google Scholar