Open Access

Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz


Cite

I. Nicander, M. Nyren, L. Emtestam, S. Ollmar, Baseline electrical impedance measurements at various skin sites related to age and sex, Skin Research and Technology 3 (4) (1997) 252-258. https://doi.org/10.1111/j.1600-0846.1997.tb00194.xNicanderI.NyrenM.EmtestamL.OllmarS.Baseline electrical impedance measurements at various skin sites related to age and sexSkin Research and Technology341997252258https://doi.org/10.1111/j.1600-0846.1997.tb00194.x10.1111/j.1600-0846.1997.tb00194.xSearch in Google Scholar

P. Åberg, U. Birgersson, P. Elsner, P. Mohr, S. Ollmar, Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma, Experimental Dermatology 20 (8) (2011) 648-652. https://doi.org/10.1111/j.1600-0625.2011.01285.xÅbergP.BirgerssonU.ElsnerP.MohrP.OllmarS.Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanomaExperimental Dermatology2082011648652https://doi.org/10.1111/j.1600-0625.2011.01285.x10.1111/j.1600-0625.2011.01285.xSearch in Google Scholar

S. Gabriel, R. Lau, C. Gabriel, The dielectric properties of biological tissues: iii. parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology 41 (11) (1996) 2271. https://doi.org/10.1088/0031-9155/41/11/003GabrielS.LauR.GabrielC.The dielectric properties of biological tissues: iii. parametric models for the dielectric spectrum of tissuesPhysics in Medicine and Biology411119962271https://doi.org/10.1088/0031-9155/41/11/00310.1088/0031-9155/41/11/003Search in Google Scholar

D. Miklavčič, N. Pavšelj, F. X. Hart, Electric properties of tissues, Wiley Encyclopedia of Biomedical Engineering. https://doi.org/10.1002/9780471740360.ebs0403MiklavčičD.PavšeljN.X. HartF.Electric properties of tissues, Wiley Encyclopedia of Biomedical Engineeringhttps://doi.org/10.1002/9780471740360.ebs040310.1002/9780471740360.ebs0403Search in Google Scholar

T. Yamamoto, Y. Yamamoto, Electrical properties of the epidermal stratum corneum, Medical and Biological Engineering 14 (2) (1976) 151-158. https://doi.org/10.1007/BF02478741YamamotoT.YamamotoY.Electrical properties of the epidermal stratum corneumMedical and Biological Engineering1421976151158https://doi.org/10.1007/BF0247874110.1007/BF02478741Search in Google Scholar

U. Birgersson, E. Birgersson, P. Åberg, I. Nicander, S. Ollmar, Non-invasive bioimpedance of intact skin: mathematical modeling and experiments, Physiological Measurement 32 (1) (2010) 1. https://doi.org/10.1088/0967-3334/32/1/001BirgerssonU.BirgerssonE.ÅbergP.NicanderI.OllmarS.Non-invasive bioimpedance of intact skin: mathematical modeling and experimentsPhysiological Measurement32120101https://doi.org/10.1088/0967-3334/32/1/00110.1088/0967-3334/32/1/001Search in Google Scholar

A. Tavernier, M. Dierickx, M. Hinsenkamp, Tensors of dielectric permittivity and conductivity of in vitro human dermis and epidermis, Bioelectrochemistry and Bioenergetics 30 (1993) 65-72. https://doi.org/10.1016/0302-4598(93)80063-ZTavernierA.DierickxM.HinsenkampM.Tensors of dielectric permittivity and conductivity of in vitro human dermis and epidermisBioelectrochemistry and Bioenergetics3019936572https://doi.org/10.1016/0302-4598(93)80063-Z10.1016/0302-4598(93)80063-ZSearch in Google Scholar

A. Tavernier, M. Dierickx, M. Hinsenkamp, Conductivity and dielectric permittivity of dermis and epidermis in nutrient liquid saturation, in: Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE, Vol. 1, IEEE, 1992, pp. 274-275. https://doi.org/10.1109/IEMBS.1992.5760961TavernierA.DierickxM.HinsenkampM.Conductivity and dielectric permittivity of dermis and epidermis in nutrient liquid saturationinEngineering in Medicine and Biology Society199214th Annual International Conference of the IEEEVol. 1IEEE, 1992, pp274275https://doi.org/10.1109/IEMBS.1992.576096110.1109/IEMBS.1992.589706Search in Google Scholar

U. Birgersson, E. Birgersson, I. Nicander, S. Ollmar, A methodology for extracting the electrical properties of human skin, Physiological Measurement 34 (6) (2013) 723. https://doi.org/10.1088/0967-3334/34/6/723BirgerssonU.BirgerssonE.NicanderI.OllmarS.A methodology for extracting the electrical properties of human skinPhysiological Measurement3462013723https://doi.org/10.1088/0967-3334/34/6/72310.1088/0967-3334/34/6/72323719278Search in Google Scholar

B. Tsai, H. Xue, E. Birgersson, S. Ollmar, U. Birgersson, Analysis of a mechanistic model for non-invasive bioimpedance of intact skin, Journal of Electrical Bioimpedance 8 (1) (2017) 84-96. http://dx.doi.org/10.5617/jeb.4826TsaiB.XueH.BirgerssonE.OllmarS.BirgerssonU.Analysis of a mechanistic model for non-invasive bioimpedance of intact skinJournal of Electrical Bioimpedance8120178496http://dx.doi.org/10.5617/jeb482610.5617/jeb.4826Search in Google Scholar

B. Tsai, E. Birgersson, U. H. Birgersson, Mechanistic multilayer model for non-invasive bioimpedance of intact skin, Journal of electrical bioimpedance 9 (2018) 31-38. https://doi.org/10.2478/joeb-2018-0006TsaiB.BirgerssonE.BirgerssonU. H.Mechanistic multilayer model for non-invasive bioimpedance of intact skinJournal of electrical bioimpedance920183138https://doi.org/10.2478/joeb-2018-000610.2478/joeb-2018-0006785201433584918Search in Google Scholar

M. Huzaira, F. Rius, M. Rajadhyaksha, R. R. Anderson, S. González, Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy, Journal of Investigative Dermatology 116 (6) (2001) 846-852. https://doi.org/10.1046/j.0022-202x.2001.01337.xHuzairaM.RiusF.RajadhyakshaM.AndersonR. R.GonzálezS.Topographic variations in normal skinas viewed by in vivo reflectance confocal microscopy, Journal of Investigative Dermatology11662001846852https://doi.org/10.1046/j.0022-202x.2001.01337.x10.1046/j.0022-202x.2001.01337.x11407970Search in Google Scholar

S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, T. A. Nuijs, Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography, Journal of Biomedical Optics 9 (2) (2004) 274-281. https://doi.org/10.1117/1.1645795NeerkenS.LucassenG. W.BisschopM. A.LenderinkE.NuijsT. A.Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomographyJournal of Biomedical Optics922004274281https://doi.org/10.1117/1.164579510.1117/1.164579515065891Search in Google Scholar

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site, Journal of Dermatological Science 44 (3) (2006) 145-152. https://doi.org/10.1016/j.jdermsci.2006.09.008GambichlerT.MatipR.MoussaG.AltmeyerP.HoffmannK.In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of agegender, skin type, and anatomic site, Journal of Dermatological Science4432006145152https://doi.org/10.1016/j.jdermsci.2006.09.00810.1016/j.jdermsci.2006.09.00817071059Search in Google Scholar

G. Josse, J. George, D. Black, Automatic measurement of epidermal thickness from optical coherence tomography images using a new algorithm, Skin Research and Technology 17 (3) (2011) 314-319. https://doi.org/10.1111/j.1600-0846.2011.00499.xJosseG.GeorgeJ.BlackD.Automatic measurement of epidermal thickness from optical coherence tomography images using a new algorithmSkin Research and Technology1732011314319https://doi.org/10.1111/j.1600-0846.2011.00499.x10.1111/j.1600-0846.2011.00499.x21371127Search in Google Scholar

T. Tsugita, T. Nishijima, T. Kitahara, Y. Takema, Positional differences and aging changes in Japanese woman epidermal thickness and corneous thickness determined by OCT (optical coherence tomography), Skin Research and Technology 19 (3) (2013) 242-250. https://doi.org/10.1111/srt.12021TsugitaT.NishijimaT.KitaharaT.TakemaY.Positional differences and aging changes in Japanese woman epidermal thickness and corneous thickness determined by OCT (optical coherence tomography)Skin Research and Technology1932013242250https://doi.org/10.1111/srt.1202110.1111/srt.1202123574500Search in Google Scholar

C. Trojahn, G. Dobos, C. Richter, U. Blume-Peytavi, J. Kottner, Measuring skin aging using optical coherence tomography in vivo: a validation study, Journal of Biomedical Optics 20 (4) (2015) 045003. https://doi.org/10.1117/1.JBO.20.4.045003TrojahnC.DobosG.RichterC.Blume-PeytaviU.KottnerJ.Measuring skin aging using optical coherence tomography in vivo: a validation studyJournal of Biomedical Optics2042015045003https://doi.org/10.1117/1.JBO.20.4.04500310.1117/1.JBO.20.4.04500325875627Search in Google Scholar

K. A. Holbrook, G. F. Odland, Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis, Journal of Investigative Dermatology 62 (4) (1974) 415-422. https://doi.org/10.1111/1523-1747.ep12701670HolbrookK. A.OdlandG. F.Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysisJournal of Investigative Dermatology6241974415422https://doi.org/10.1111/1523-1747.ep1270167010.1111/1523-1747.ep127016704820685Search in Google Scholar

D. A. Schwindt, K. P.Wilhelm, H. I. Maibach, Water diffusion characteristics of human stratum corneum at different anatomical sites in vivo, Journal of Investigative Dermatology 111 (3) (1998) 385-389. https://doi.org/10.1046/j.1523-1747.1998.00321.xSchwindtD. A.P.WilhelmK.I. MaibachH.Water diffusion characteristics of human stratum corneum at different anatomical sites in vivoJournal of Investigative Dermatology11131998385389https://doi.org/10.1046/j.1523-1747.1998.00321.x10.1046/j.1523-1747.1998.00321.x9740228Search in Google Scholar

K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, J. Ennen, Age related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo, Skin Research and Technology 8 (1) (2002) 52-56. https://doi.org/10.1046/j.0909-752x.2001.10297.xSauermannK.ClemannS.JaspersS.GambichlerT.AltmeyerP.HoffmannK.EnnenJ.Age related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivoSkin Research and Technology8120025256https://doi.org/10.1046/j.0909-752x.2001.10297.x10.1046/j.0909-752x.2001.10297.x12005120Search in Google Scholar

M. Egawa, T. Hirao, M. Takahashi, In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy, Acta Derm Venereol 87 (1) (2007) 4-8. https://doi.org/10.2340/00015555-0183EgawaM.HiraoT.TakahashiM.In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopyActa Derm Venereol871200748https://doi.org/10.2340/00015555-018310.2340/00015555-018317225007Search in Google Scholar

J. Crowther, A. Sieg, P. Blenkiron, C. Marcott, P. Matts, J. Kaczvinsky, A. Rawlings, Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo, British journal of Dermatology 159 (3) (2008) 567-577. https://doi.org/10.1111/j.1365-2133.2008.08703.xCrowtherJ.SiegA.BlenkironP.MarcottC.MattsP.KaczvinskyJ.RawlingsA.Measuring the effects of topical moisturizers on changes in stratum corneum thicknesswater gradients and hydration in vivo, British journal of Dermatology15932008567577https://doi.org/10.1111/j.1365-2133.2008.08703.x10.1111/j.1365-2133.2008.08703.x18616783Search in Google Scholar

L. Binder, S. SheikhRezaei, A. Baierl, L. Gruber, M. Wolzt, C. Valenta, Confocal raman spectroscopy: In vivo measurement of physiological skin parameters: a pilot study, Journal of Dermatological Science 88 (3) (2017) 280-288. https://doi.org/10.1016/j.jdermsci.2017.08.002BinderL.SheikhRezaeiS.BaierlA.GruberL.WolztM.ValentaC.Confocal raman spectroscopy: In vivo measurement of physiological skin parameters: a pilot studyJournal of Dermatological Science8832017280288https://doi.org/10.1016/j.jdermsci.2017.08.00210.1016/j.jdermsci.2017.08.00228826690Search in Google Scholar

C. Tan, B. Statham, R. Marks, P. Payne, Skin thickness measurement by pulsed ultrasound; its reproducibility, validation and variability, British Journal of Dermatology 106 (6) (1982) 657-667. https://doi.org/10.1111/j.1365-2133.1982.tb14702.xTanC.StathamB.MarksR.PayneP.Skin thickness measurement by pulsed ultrasound; its reproducibilityvalidation and variability, British Journal of Dermatology10661982657667https://doi.org/10.1111/j.1365-2133.1982.tb14702.x10.1111/j.1365-2133.1982.tb14702.x7082570Search in Google Scholar

K. Hoffmann, M. Stuücker, T. Dirschka, S. Goörtz, S. El-Gammal, K. Dirting, A. Hoffmann, P. Altmeyer, Twenty MHz B-scan sonography for visualization and skin thickness measurement of human skin, Journal of the European Academy of Dermatology and Venereology 3 (3) (1994) 302313. https://doi.org/10.1111/j.1468-3083.1994.tb00367.xHoffmannK.StuückerM.DirschkaT.GoörtzS.El-GammalS.DirtingK.HoffmannA.AltmeyerP.Twenty MHz B-scan sonography for visualization and skin thickness measurement of human skinJournal of the European Academy of Dermatology and Venereology331994302313https://doi.org/10.1111/j.1468-3083.1994.tb00367.x10.1111/j.1468-3083.1994.tb00367.xSearch in Google Scholar

Y. Lee, K. Hwang, Skin thickness of Korean adults, Surgical and radiologic anatomy 24 (3-4) (2002) 183-189. http://dx.doi.org/10.1007/s00276-002-0034-5LeeY.HwangK.Skin thickness of Korean adultsSurgical and radiologic anatomy243-42002183189http://dx.doi.org/10.1007/s00276-002-0034-510.1007/s00276-002-0034-512375070Search in Google Scholar

Moore, M. Lunt, B. McManus, M. Anderson, A. Herrick, Seventeen-point dermal ultrasound scoring system - a reliable measure of skin thickness in patients with systemic sclerosis, Rheumatology 42 (12) (2003) 1559-1563. https://doi.org/10.1093/rheumatology/keg435MooreMLuntBMcManusMAndersonAHerrick, Seventeen-point dermal ultrasound scoring system - a reliable measure of skin thickness in patients with systemic sclerosisRheumatology4212200315591563https://doi.org/10.1093/rheumatology/keg43510.1093/rheumatology/keg43512867579Search in Google Scholar

J. D. Jackson, Classical electrodynamics, Wiley, 1999, Ch. Appendix, pp. 780-781. http://as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.htmlJacksonJ. D.Classical electrodynamicsWiley1999Ch. Appendix, pp780781http://as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.htmlSearch in Google Scholar

Matlab, Matlab r2018a (2018). URL www.mathworks.com/products/matlabMatlab, Matlab r2018a2018URLwww.mathworks.com/products/matlabSearch in Google Scholar

D. Dean, T. Ramanathan, D. Machado, R. Sundararajan, Electrical impedance spectroscopy study of biological tissues, Journal of Electrostatics 66 (3) (2008) 165-177. https://doi.org/10.1016/j.elstat.2007.11.005DeanD.RamanathanT.MachadoD.SundararajanR.Electrical impedance spectroscopy study of biological tissuesJournal of Electrostatics6632008165177https://doi.org/10.1016/j.elstat.2007.11.00510.1109/CEIDP.2006.311943Search in Google Scholar

K. Sasaki, K. Wake, S. Watanabe, Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz, Physics in Medicine & Biology 59 (16) (2014) 4739. https://doi.org/10.1088/0031-9155/59/16/4739SasakiK.WakeK.WatanabeS.Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHzPhysics in Medicine & Biology591620144739https://doi.org/10.1088/0031-9155/59/16/473910.1088/0031-9155/59/16/473925082800Search in Google Scholar

R. Pethig, D. B. Kell, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology, Physics in Medicine and Biology 32 (8) (1987) 933. https://doi.org/10.1088/0031-9155/32/8/001PethigR.KellD. B.The passive electrical properties of biological systems: their significance in physiologybiophysics and biotechnology, Physics in Medicine and Biology3281987933https://doi.org/10.1088/0031-9155/32/8/00110.1088/0031-9155/32/8/0013306721Search in Google Scholar

H. P. Schwan, Electrical properties of tissue and cell suspensions., Advances in Biological and Medical Physics 5 (1957) 147. https://doi.org/10.1016/B978-1-4832-3111-2.50008-0SchwanH. P.Electrical properties of tissue and cell suspensionsAdvances in Biological and Medical Physics51957147https://doi.org/10.1016/B978-1-4832-3111-2.50008-010.1016/B978-1-4832-3111-2.50008-013520431Search in Google Scholar

Ø. G. Martinsen, S. Grimnes, Bioimpedance and bioelectricity basics, Academic press, 2014, Ch. 3, p. 73. https://doi.org/10.1016/C2012-0-06951-7G. MartinsenØ.GrimnesS.Bioimpedance and bioelectricity basicsAcademic press2014Ch. 3, p. 73https://doi.org/10.1016/C2012-0-06951-710.1016/C2012-0-06951-7Search in Google Scholar

Ø. G. Martinsen, S. Grimnes, Facts and myths about electrical measurement of stratum corneum hydration state, Dermatology 202 (2) (2001) 87-89. https://doi.org/10.1159/000051604G. MartinsenØ.GrimnesS.Facts and myths about electrical measurement of stratum corneum hydration stateDermatology202220018789https://doi.org/10.1159/00005160410.1159/00005160411306826Search in Google Scholar

Ø. Martinsen, S. Grimnes, On using single frequency electrical measurements for skin hydration assessment, Innovation et Technologie en Biologie et Médecine 19 (1998) 395-400.Ø. MartinsenS.Grimnes, On using single frequency electrical measurements for skin hydration assessmentInnovation et Technologie en Biologie et Médecine191998395400Search in Google Scholar

Ø. Martinsen, S. Grimnes, O. Sveen, Dielectric properties of some keratinised tissues. part 1: Stratum corneum and nail in situ, Medical and Biological Engineering and Computing 35 (3) (1997) 172-176. https://doi.org/10.1007/BF02530033Ø. MartinsenS.GrimnesO.Sveen, Dielectric properties of some keratinised tissues. part 1: Stratum corneum and nail in situMedical and Biological Engineering and Computing3531997172176https://doi.org/10.1007/BF0253003310.1007/BF025300339246847Search in Google Scholar

S. Whitaker, The method of volume averaging, Vol. 13, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-94-017-3389-2WhitakerS.The method of volume averagingVol. 13Springer Science & Business Media2013https://doi.org/10.1007/978-94-017-3389-210.1007/978-94-017-3389-2Search in Google Scholar

T. Zhang, E. Birgersson, J. Luther, A spatially smoothed device model for organic bulk heterojunction solar cells, Journal of Applied Physics 113 (17) (2013) 174505. https://doi.org/10.1063/1.4803542ZhangT.BirgerssonE.LutherJ.A spatially smoothed device model for organic bulk heterojunction solar cellsJournal of Applied Physics113172013174505https://doi.org/10.1063/1.480354210.1063/1.4803542Search in Google Scholar

T. Zhang, E. Birgersson, J. Luther, Modeling the structure-property relations in pillar-structured organic donor/acceptor solar cells, Organic Electronics 15 (11) (2014) 2742-2748. https://doi.org/10.1016/j.orgel.2014.07.036ZhangT.BirgerssonE.LutherJ.Modeling the structure-property relations in pillar-structured organic donor/acceptor solar cellsOrganic Electronics1511201427422748https://doi.org/10.1016/j.orgel.2014.07.03610.1016/j.orgel.2014.07.036Search in Google Scholar

H. Xue, R. Stangl, E. Birgersson, A spatially smoothed device model for meso-structured perovskite solar cells, Journal of Applied Physics, 124, 193103 (2018). https://doi.org/10.1063/1.5045379XueH.StanglR.BirgerssonE.A spatially smoothed device model for meso-structured perovskite solar cellsJournal of Applied Physics1241931032018https://doi.org/10.1063/1.504537910.1063/1.5045379Search in Google Scholar