Open Access

Use of a conical conducting layer with an electrical impedance probe to enhance sensitivity in epithelial tissues


Cite

Bertemes-Filho P. Electrical Impedance Spectroscopy. Bioimpedance in Biomedical Applications and Research: Springer; 2018. p. 5-27. https://doi.org/10.1007/978-3-319-74388-2-2Bertemes-FilhoP.Electrical Impedance Spectroscopy. Bioimpedance in Biomedical Applications and ResearchSpringer2018527https://doi.org/10.1007/978-3-319-74388-2-210.1007/978-3-319-74388-2_2Search in Google Scholar

Abdul S, Brown B, Milnes P, Tidy J. A clinical study of the use of impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN). Gynecologic Oncology. 2005;99(3):S64-S6. https://doi.org/10.1016/j.ygyno.2005.07.046AbdulSBrownBMilnesPTidyJA clinical study of the use of impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN)Gynecologic Oncology2005993S64S6https://doi.org/10.1016/j.ygyno.2005.07.04610.1016/j.ygyno.2005.07.04616450430Search in Google Scholar

Abdul S, Brown B, Milnes P, Tidy J. The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. International Journal of Gynecological Cancer. 2006;16(5):1823-32. https://doi.org/10.1111/j.1525-1438.2006.00651.xAbdulSBrownBMilnesPTidyJThe use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasiaInternational Journal of Gynecological Cancer2006165182332https://doi.org/10.1111/j.1525-1438.2006.00651.x10.1111/j.1525-1438.2006.00651.x17009978Search in Google Scholar

Brown BH, Milnes P, Abdul S, Tidy JA. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG: An International Journal of Obstetrics & Gynaecology. 2005;112(6):802-6. https://doi.org/10.1111/j.1471-0528.2004.00530.xBrownBHMilnesPAbdulSTidyJADetection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective studyBJOG: An International Journal of Obstetrics & Gynaecology200511268026https://doi.org/10.1111/j.1471-0528.2004.00530.x10.1111/j.1471-0528.2004.00530.x15924541Search in Google Scholar

Murdoch C, Brown BH, Hearnden V, Speight PM, D'Apice K, Hegarty AM, et al. Use of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesions. International journal of nanomedicine. 2014;9:4521. https://doi.org/10.2147/IJN.S64087MurdochCBrownBHHearndenVSpeightPMD'ApiceKHegartyAMet alUse of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesionsInternational journal of nanomedicine201494521https://doi.org/10.2147/IJN.S6408710.2147/IJN.S64087418175125285005Search in Google Scholar

Tatullo M, Marrelli M, Amantea M, Paduano F, Santacroce L, Gentile S, et al. Bioimpedance detection of oral lichen planus used as preneoplastic model. Journal of Cancer. 2015;6(10):976. https://doi.org/10.7150/jca.11936TatulloMMarrelliMAmanteaMPaduanoFSantacroceLGentileSet alBioimpedance detection of oral lichen planus used as preneoplastic modelJournal of Cancer2015610976https://doi.org/10.7150/jca.1193610.7150/jca.11936456584626366210Search in Google Scholar

González-Correa C, Brown B, Smallwood R, Kalia N, Stoddard C, Stephenson T, et al. Virtual biopsies in Barrett's esophagus using an impedance probe. Annals of the New York Academy of Sciences. 1999;873(1):313-21. https://doi.org/10.1111/j.1749-6632.1999.tb09479.xGonzález-CorreaCBrownBSmallwoodRKaliaNStoddardCStephensonTet alVirtual biopsies in Barrett's esophagus using an impedance probeAnnals of the New York Academy of Sciences1999873131321https://doi.org/10.1111/j.1749-6632.1999.tb09479.x10.1111/j.1749-6632.1999.tb09479.x10372179Search in Google Scholar

Weijenborg PW, Rohof WO, Akkermans LM, Verheij J, Smout AJ, Bredenoord AJ. Electrical tissue impedance spectroscopy: a novel device to measure esophageal mucosal integrity changes during endoscopy. Neurogastroenterology & Motility. 2013;25(7):574-e458. https://doi.org/10.1111/nmo.12106WeijenborgPWRohofWOAkkermansLMVerheijJSmoutAJBredenoordAJElectrical tissue impedance spectroscopy: a novel device to measure esophageal mucosal integrity changes during endoscopyNeurogastroenterology & Motility2013257574e458https://doi.org/10.1111/nmo.1210610.1111/nmo.1210623607721Search in Google Scholar

Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S. Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE transactions on biomedical engineering. 2004;51(12):2097-102. https://doi.org/10.1109/TBME.2004.836523AbergPNicanderIHanssonJGeladiPHolmgrenUOllmarSSkin cancer identification using multifrequency electrical impedance-a potential screening toolIEEE transactions on biomedical engineering200451122097102https://doi.org/10.1109/TBME.2004.83652310.1109/TBME.2004.83652315605856Search in Google Scholar

Martinsen ØG, Grimnes S, Karlsen J. Electrical methods for skin moisture assessment. Skin Pharmacology and Physiology. 1995;8(5):237-45. https://doi.org/10.1159/000211353MartinsenØGGrimnesSKarlsenJElectrical methods for skin moisture assessmentSkin Pharmacology and Physiology19958523745https://doi.org/10.1159/00021135310.1159/0002113538527155Search in Google Scholar

Grimnes S, Martinsen ØG. Bioelectricity and bioimpedance basics. 2nd ed: Academic Press; 2008.GrimnesSMartinsenØGBioelectricity and bioimpedance basics2nd edAcademic Press200810.1016/B978-0-12-374004-5.00003-9Search in Google Scholar

Brown B, Wilson A, Bertemes-Filho P. Bipolar and tetrapolar transfer impedance measurements from volume conductor. Electronics Letters. 2000;36(25):2060-2. https://doi.org/10.1049/el:20001439BrownBWilsonABertemes-FilhoPBipolar and tetrapolar transfer impedance measurements from volume conductorElectronics Letters2000362520602https://doi.org/10.1049/el:2000143910.1049/el:20001439Search in Google Scholar

Grimnes S, Martinsen ØG. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. Journal of Physics D: Applied Physics. 2006;40(1):9. https://doi.org/10.1088/0022-3727/40/1/S02GrimnesSMartinsenØGSources of error in tetrapolar impedance measurements on biomaterials and other ionic conductorsJournal of Physics D: Applied Physics20064019https://doi.org/10.1088/0022-3727/40/1/S0210.1088/0022-3727/40/1/S02Search in Google Scholar

Kadir MA. Development of a multi-frequency system for medical application of Focused Impedance Method (FIM). Doctoral dissertation, University of Dhaka; 2018 http://repository.library.du.ac.bd:8080/handle/123456789/1245KadirMADevelopment of a multi-frequency system for medical application of Focused Impedance Method (FIM)Doctoral dissertationUniversity of Dhaka2018http://repository.library.du.ac.bd:8080/handle/123456789/1245Search in Google Scholar

Islam N, Rabbani KS, Wilson A. The sensitivity of focused electrical impedance measurements. Physiological measurement. 2010;31(8):S97. https://doi.org/10.1088/0967-3334/31/8/S08IslamNRabbaniKSWilsonAThe sensitivity of focused electrical impedance measurementsPhysiological measurement2010318S97https://doi.org/10.1088/0967-3334/31/8/S0810.1088/0967-3334/31/8/S08Search in Google Scholar

Brown BH, Tidy JA, Boston K, Blackett AD, Smallwood RH, Sharp F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. The Lancet. 2000;355(9207):892-5. https://doi.org/10.1016/S0140-673699)09095-9BrownBHTidyJABostonKBlackettADSmallwoodRHSharpFRelation between tissue structure and imposed electrical current flow in cervical neoplasiaThe Lancet200035592078925https://doi.org/10.1016/S0140-673699)09095-910.1016/S0140-6736(99)09095-9Search in Google Scholar

Ghosh I, Mittal S, Banerjee D, Chowdhury N, Basu P. Study of Correlation of Cervical Epithelial Thickness With the Grade of Colposcopic Abnormality. International Journal of Gynecological Pathology. 2016;35(3):269-74. https://doi.org/10.1097/PGP.0000000000000249GhoshIMittalSBanerjeeDChowdhuryNBasuPStudy of Correlation of Cervical Epithelial Thickness With the Grade of Colposcopic AbnormalityInternational Journal of Gynecological Pathology201635326974https://doi.org/10.1097/PGP.000000000000024910.1097/PGP.000000000000024926598985Search in Google Scholar

Bertemes-Filho P, Brown BH, Smallwood RH Wilson AJ, Standoff electrode (SoE): a new method for improving the sensitivity distribution of a tetrapolar probe, Physiological Measurement. 2003; 24:517–525. https://doi.org/10.1088/0967-3334/24/2/362Bertemes-FilhoPBrownBHSmallwoodRHWilsonAJStandoff electrode (SoE): a new method for improving the sensitivity distribution of a tetrapolar probePhysiological Measurement200324517525https://doi.org/10.1088/0967-3334/24/2/36210.1088/0967-3334/24/2/36212812435Search in Google Scholar

Andreuccetti D FR, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz 1997. Available from: Website at http://niremf.ifac.cnr.it/tissprop/. IFAC-CNR, Florence (Italy).AndreuccettiD FRPetrucciCAn Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz1997Available from: Website athttp://niremf.ifac.cnr.it/tissprop/IFAC-CNR, Florence (Italy)Search in Google Scholar