Open Access

Mechanistic multilayer model for non-invasive bioimpedance of intact skin


Cite

Birgersson U, Birgersson E, Åberg P, Nicander I, Ollmar S. Noninvasive bioimpedance of intact skin: mathematical modeling and experiments. Physiological Measurement. 2010;32(1):1. https://doi.org/10.1088/0967-3334/32/l/001BirgerssonUBirgerssonEÅbergPNicanderIOllmarS.Noninvasive bioimpedance of intact skin: mathematical modeling and experimentsPhysiological Measurement.20103211https://doi.org/10.1088/0967-3334/32/l/00110.1088/0967-3334/32/1/001Search in Google Scholar

Birgersson UH, Birgersson E, Ollmar S. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical Analysis and Measurements. Journal of Electrical Bioimpedance. 2012;3(1):51–60. https://doi.org/10.5617/jeb.400BirgerssonUHBirgerssonEOllmarS.Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical Analysis and MeasurementsJournal of Electrical Bioimpedance.2012315160https://doi.org/10.5617/jeb.40010.5617/jeb.400Search in Google Scholar

Tsai B, Xue H, Birgersson E, Ollmar S, Birgersson UH. Analysis of a mechanistic model for non-invasive bio-impedance of intact skin. Journal of Electrical Bioimpedance. 2017; 8: 84-96. https://doi.org/10.5617/jeb.4826TsaiBXueHBirgerssonEOllmarSBirgerssonUH.Analysis of a mechanistic model for non-invasive bio-impedance of intact skinJournal of Electrical Bioimpedance.201788496https://doi.org/10.5617/jeb.482610.5617/jeb.4826Search in Google Scholar

Martinsen OG, Grimnes S, Haug E. Measuring depth depends on frequency in electrical skin impedance measurements. Skin Research and Technology. 1999; 5(3): 179–181. https://doi.org/10.1111/j.1600-0846.1999.tb00128.xMartinsenOGGrimnesSHaugE.Measuring depth depends on frequency in electrical skin impedance measurementsSkin Research and Technology.199953179181https://doi.org/10.1111/j.1600-0846.1999.tb00128.x10.1111/j.1600-0846.1999.tb00128.xSearch in Google Scholar

Jones D, Smallwood R, Hose D, Brown B, Walker D. Modelling of epithelial tissue impedance measured using three different designs of probe. Physiological Measurement. 2003; 24(2) 606–624. https://doi.org/10.1088/0967-3334/24/2/369JonesDSmallwoodRHoseDBrownBWalkerD.Modelling of epithelial tissue impedance measured using three different designs of probePhysiological Measurement.2003242606624https://doi.org/10.1088/0967-3334/24/2/36910.1088/0967-3334/24/2/369Search in Google Scholar

Hartinger AE, Guardo R, Kokta V, Gagnon H. A 3-D hybrid finite element model to characterize the electrical behavior of cutaneous tissues. IEEE Transactions on Biomedical Engineering. 2010;57(4):780–789. https://doi.org/10.1109/TBME.2009.2036371HartingerAEGuardoRKoktaVGagnonH.A 3-D hybrid finite element model to characterize the electrical behavior of cutaneous tissuesIEEE Transactions on Biomedical Engineering.2010574780789https://doi.org/10.1109/TBME.2009.203637110.1109/TBME.2009.2036371Search in Google Scholar

Miller CE, Henriquez CS. Finite element analysis of bioelectric phenomena. Critical Reviews in Biomedical Engineering. 1989;18(3):207–233. http://europepmc.org/abstract/med/2286094MillerCEHenriquezCS.Finite element analysis of bioelectric phenomenaCritical Reviews in Biomedical Engineering.1989183207233http://europepmc.org/abstract/med/2286094Search in Google Scholar

Bédard C, Kröger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal. 2004;86(3):1829– 1842. https://doi.org/10.1016/S0006-3495(04)74250-2BédardCKrögerHDestexheA.Modeling extracellular field potentials and the frequency-filtering properties of extracellular spaceBiophysical Journal.200486318291842https://doi.org/10.1016/S0006-3495(04)74250-210.1016/S0006-3495(04)74250-2Search in Google Scholar

Birgersson U, Birgersson E, Nicander I, Ollmar S. A methodology for extracting the electrical properties of human skin. Physiological Measurement. 2013;34(6):723. https://doi.org/10.1088/0967-3334/34/6/723BirgerssonUBirgerssonENicanderIOllmarS.A methodology for extracting the electrical properties of human skinPhysiological Measurement.2013346723https://doi.org/10.1088/0967-3334/34/6/72310.1088/0967-3334/34/6/72323719278Search in Google Scholar

Asmar NH. Partial differential equations with Fourier series and boundary value problems. Prentice Hall. 2005, Ch. 8. https://www.pearson.com/us/higher-education/program/Asmar-Partial-Differential-Equations-and-Boundary-Value-Problems-with-Fourier-Series-2nd-Edition/PGM197997.htmlAsmarNH.Partial differential equations with Fourier series and boundary value problems.Prentice Hall20058https://www.pearson.com/us/higher-education/program/Asmar-Partial-Differential-Equations-and-Boundary-Value-Problems-with-Fourier-Series-2nd-Edition/PGM197997.htmlSearch in Google Scholar

Birgersson U. Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurements. Inst för klinisk vetenskap, Dept of Clinical Science, Intervention and Technology; 2012. https://openarchive.ki.se/xmlui/handle/10616/41328BirgerssonU.Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurementsInst för klinisk vetenskapDept of Clinical Science, Intervention and Technology2012https://openarchive.ki.se/xmlui/handle/10616/41328Search in Google Scholar

Jackson JD. Appendix. In: Classical electrodynamics. Wiley; 1999. p. 780–781. http://as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.htmlJacksonJD.AppendixClassical electrodynamics.Wiley1999780781http://as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.htmlSearch in Google Scholar

COMSOL. COMSOL Multiphysics 5.0; 2016. Available from: https://www.comsol.com/.COMSOL. COMSOL Multiphysics 5.0; 2016. Available fromhttps://www.comsol.com/Search in Google Scholar

Matlab. MATLAB R2011; 2016. Available from: www.mathworks.com/products/matlab.Matlab. MATLAB R2011; 2016. Available fromwww.mathworks.com/products/matlabSearch in Google Scholar