Open Access

Coronary Shear Stress after Implantation of Bioresorbable Scaffolds – a Modern Interdisciplinary Concept at the Border between Interventional Cardiology and Cardiac Imaging


Cite

1. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115-126.10.1056/NEJM199901143400207Search in Google Scholar

2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685-1695.10.1056/NEJMra043430Search in Google Scholar

3. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12-22.10.1161/01.ATV.0000105054.43931.f0Search in Google Scholar

4. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035-2042.10.1001/jama.282.21.2035Search in Google Scholar

5. Stone P, Coskun A, Yeghiazarians Y, et al. Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol. 2003;18:458-470.10.1097/00001573-200311000-00007Search in Google Scholar

6. Gimbrone MA Jr., Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000;902:230-239.Search in Google Scholar

7. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85:9-23.10.1038/labinvest.3700215Search in Google Scholar

8. Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature. 1969;223:1159-1160.10.1038/2231159a0Search in Google Scholar

9. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res. 1990;66:1045-1066.10.1161/01.RES.66.4.1045Search in Google Scholar

10. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302.10.1161/01.ATV.5.3.293Search in Google Scholar

11. Moore JE Jr., Xu C, Glagov S, Zarins CK, Ku DN. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis. 1994;110:225-240.10.1016/0021-9150(94)90207-0Search in Google Scholar

12. Gambillara V, Chambaz C, Montorzi G, Roy S, Stergiopulos N, Silacci P. Plaque-prone hemodynamics impair endothelial function in pig carotid arteries. Am J Physiol Heart Circ Physiol. 2006;290:H2320-2328.10.1152/ajpheart.00486.2005Search in Google Scholar

13. Cheng C, van Haperen R, de Waard M, et al. Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood. 2005;106:3691-3698.10.1182/blood-2005-06-2326Search in Google Scholar

14. Buchanan JR Jr., Kleinstreuer C, Truskey GA, Lei M. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis. 1999;143:27-40.10.1016/S0021-9150(98)00264-0Search in Google Scholar

15. Stone PH, Coskun AU, Kinlay S, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation. 2003;108:438-44.10.1161/01.CIR.0000080882.35274.AD12860915Search in Google Scholar

16. Wentzel JJ, Corti R, Fayad ZA, et al. Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol. 2005;45:846-854.10.1016/j.jacc.2004.12.02615766817Search in Google Scholar

17. Chatzizisis YS, Jonas M, Coskun AU. Low endothelial shear stress (ESS) is responsible for the heterogeneity and severity of coronary atherosclerotic plaques: an in-vivo IVUS natural history study (abstr). Circulation. 2006;114:II23.Search in Google Scholar

18. Chatzizisis YS, Jonas M, Coskun AU. Low endothelial shear stress (ESS) predicts the development of high-risk coronary atherosclerotic plaques: a correlative IVUS and histopathology natural history study (abstr). J Am Coll Cardiol. 2007;49:Suppl A:334A.Search in Google Scholar

19. Chatzizisis YS, Jonas M, Coskun AU. Low endothelial shear stress (ESS) leads to expansive remodeling of atherosclerotic coronary subsegments: an in-vivo follow-up IVUS study (abstr). J Am Coll Cardiol. 2007;49:SupplA:335.Search in Google Scholar

20. Cheng C, Tempel D, van Haperen R, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113:2744-2753.10.1161/CIRCULATIONAHA.105.59001816754802Search in Google Scholar

21. Gambillara V, Montorzi G, Haziza-Pigeon C, Stergiopulos N, Silacci P. Arterial wall response to ex vivo exposure to oscillatory shear stress. J Vasc Res. 2005;42:535-544.10.1159/00008834316179795Search in Google Scholar

22. Stone PH, Coskun AU, Kinlay S, et al. Regions of low endothelial shear stress are sites where coronary plaque progress and vascular remodeling occurs in humans: an in-vivo serial study. Eur Heart J. 2007:28:705-710.10.1093/eurheartj/ehl57517347172Search in Google Scholar

23. Wentzel JJ, Janssen E, Vos J, et al. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation. 2003;108:17-23.10.1161/01.CIR.0000078637.21322.D312821552Search in Google Scholar

24. Wentzel JJ, Kloet J, Andhyiswara I, et al. Shear-stress and wall-stress regulation of vascular remodeling after balloon angioplasty: effect of matrix metalloproteinase inhibition. Circulation. 2001;104:91-96.10.1161/01.CIR.104.1.9111435344Search in Google Scholar

25. Nichols WW, O’Rourke MF. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 5th edition. London: A Hodder Arnold Publication, 2005.Search in Google Scholar

26. Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med. 2005;2:401-407.10.1038/ncpcardio0274Search in Google Scholar

27. Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid Mechanics. Canada: John Wiley & Sons, 1990.Search in Google Scholar

28. Feldman CL, Ilegbusi OJ, Hu Z, Nesto R, Waxman S, Stone PH. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis. Am Heart J. 2002;143:931-939.10.1067/mhj.2002.123118Search in Google Scholar

29. MacIsaac AI, Thomas JD, Topol EJ. Toward the quiescent coronary plaque. J Am Coll Cardiol. 1993;22:1228-1241.10.1016/0735-1097(93)90442-4Search in Google Scholar

30. Katranas SA, Kelekis AL, Antoniadis AP, Ziakas AG, Giannoglou GD. Differences in stress forces and geometry between left and right coronary artery: a pathophysiological aspect of atherosclerosis heterogeneity. Hellenic J Cardiol. 2015;56:217e223.Search in Google Scholar

31. Wentzel JJ, Chatzizisis YS, Gijsen FJ, Giannoglou GD, Feldman CL, Stone PH. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res. 2012;96:234e243.10.1093/cvr/cvs21722752349Search in Google Scholar

32. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379e2393.10.1016/j.jacc.2007.02.05917599600Search in Google Scholar

33. Kwak BR, Back M, Bochaton-Piallat ML, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. 2014;35:3013-3020.10.1093/eurheartj/ehu353481080625230814Search in Google Scholar

34. Tousoulis D, Papageorgiou N, Synetos A, Stefanadis C. Assessing vulnerable plaque: is shear stress enough? Int J Cardiol. 2014; 172:e135-e138.10.1016/j.ijcard.2013.12.10824485228Search in Google Scholar

35. Koskinas KC, Sukhova GK, Baker AB, et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler Thromb Vasc Biol. 2013;33:1494-1504.10.1161/ATVBAHA.112.300827395449623640495Search in Google Scholar

36. Chatzizisis YS, Baker AB, Sukhova GK, et al. Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation. 2011;123:621-630.10.1161/CIRCULATIONAHA.110.970038306607821282495Search in Google Scholar

37. Koskinas KC, Feldman CL, Chatzizisis YS, et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation. 2010;121:2092-2101.10.1161/CIRCULATIONAHA.109.901678290286420439786Search in Google Scholar

38. Xu Q. Disturbed flow-enhanced endothelial turnover in atherosclerosis. Trends Cardiovasc Med. 2009;19:191-195.10.1016/j.tcm.2009.12.00220211434Search in Google Scholar

39. Quillard T, Araujo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36:1394-1404.10.1093/eurheartj/ehv044445828725755115Search in Google Scholar

40. Cicha I, Worner A, Urschel K, et al. Carotid plaque vulnerability: a positive feedback between hemodynamic and biochemical mechanisms. Stroke. 2011;42:3502-3510.10.1161/STROKEAHA.111.62726521998063Search in Google Scholar

41. Corban MT, Eshtehardi P, Suo J, et al. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis. 2014;232:271-276.10.1016/j.atherosclerosis.2013.11.04924468138Search in Google Scholar

42. Eshtehardi P, McDaniel MC, Suo J, et al. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J Am Heart Assoc. 2012;1:e002543.10.1161/JAHA.112.002543348735123130168Search in Google Scholar

43. Samady H, Eshtehardi P, McDaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124:779-788.10.1161/CIRCULATIONAHA.111.02182421788584Search in Google Scholar

44. Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol. 2012;9:439-453.10.1038/nrcardio.2012.6422614618Search in Google Scholar

45. Bourantas CV, Papafaklis MI, Kotsia A, et al. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation: an optical coherence tomography study. JACC Cardiovasc Interv. 2014;7:315-324.10.1016/j.jcin.2013.05.03424529931Search in Google Scholar

46. Wentzel JJ, Krams R, Schuurbiers JC, et al. Relationship between neointimal thickness and shear stress after wall stent implantation in human coronary arteries. Circulation. 2001;103:1740-1755.10.1161/01.CIR.103.13.1740Search in Google Scholar

47. Brugaletta S, Heo JH, Garcia-Garcia HM, et al. Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy? Eur Heart J. 2012;33:1325-1333.Search in Google Scholar

48. Papafaklis MI, Bourantas CV, Theodorakis PE, et al. The effect of shear stress on neointimal response following sirolimus and paclitaxel-eluting stent implantation compared with bare-metal stents in humans. JACC Cardiovasc Interv. 2010;3:1181-1189.10.1016/j.jcin.2010.08.01821087755Search in Google Scholar

49. Nikolsky E, Mehran R, Dangas G, et al. Development and validation of a prognostic risk score for major bleeding in patients undergoing percutaneous coronary intervention via the femoral approach. Eur Heart J. 2007;28:1936-1945.10.1093/eurheartj/ehm194Search in Google Scholar

50. Van Werkum JW, Heestermans AA, Zomer AC, et al. Predictors of coronary stent thrombosis: The Dutch stent thrombosis registry. J Am Coll Cardiol. 2009;53:1399-1409.10.1016/j.jacc.2008.12.055Search in Google Scholar

51. Spuentrup E, Ruebben A, Mahnken A, et al. Artifact-free coronary magnetic resonance angiography an coronary vessel wall imaging in the presence of a new, metallic coronary magnetic resonance imaging stent. Circulation. 2005;111:1019-1026.10.1161/01.CIR.0000156462.97532.8FSearch in Google Scholar

52. Di Mario C, Borgia F. Assimilating the current clinical data of fully bioabsorbable stents. EuroIntervention. 2009;5:F103-F108.10.4244/EIJV5IFA18Search in Google Scholar

53. Stefanini GG, Kalesan B, Serruys PW, et al. Long-term clinical outcomes of biodegradable polymer biolimus-eluting stents versus durable polymer sirolimus-eluting stents in patients with coronary artery disease (LEADERS): 4 year follow-up of a randomised non-inferiority trial. Lancet. 2011;378:1940-1948.10.1016/S0140-6736(11)61672-3Search in Google Scholar

54. Yamaji K, Kimura T, Morimoto T, et al. Very long-term (15 to 23 years) outcomes of successful balloon angioplasty com- pared with bare metal coronary stenting. J Am Heart Assoc. 2012;1:e004085.10.1161/JAHA.112.004085354161923316303Search in Google Scholar

55. Brugaletta S, Gogas BD, Garcia-Garcia HM, et al. Vascular compliance changes of the coronary vessel wall after bioresorbable vascular scaffold implantation in the treated and adjacent segments. Circ J. 2012;76:1616-1623.10.1253/circj.CJ-11-1416Search in Google Scholar

56. Gomez-Lara J, Garcia-Garcia HM, Onuma Y, et al. A comparison of the conformability of everolimus-eluting bioresorbable vascular scaffolds to metal platform coronary stents. JACC Cardiovasc Interv. 2010;3:1190-1198.10.1016/j.jcin.2010.07.01621087756Search in Google Scholar

57. Ormiston JA, Serruys PW, Onuma Y, et al. First serial assessment at 6 months and 2 years of the second generation of absorb everolimuseluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ Cardiovasc Interv. 2012;5:620-632.10.1161/CIRCINTERVENTIONS.112.97154923048057Search in Google Scholar

58. Bourantas CV, Zhang Y, Farooq V, Garcia-Garcia HM, Onuma Y, Serruys PW. Bioresorbable scaffolds: current evidence and ongoing clinical trials. Curr Cardiol Rep. 2012;14:626-634.10.1007/s11886-012-0295-5343278822810889Search in Google Scholar

59. Nakazawa G, Ladich E, Finn AV, Virmani R. Pathophysiology of vascular healing and stent mediated arterial injury. EuroIntervention. 2008;4:C7-C10.Search in Google Scholar

60. Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314-1322.10.1016/j.jacc.2011.01.011309331021376502Search in Google Scholar

61. Oberhauser JP, Hossainy S, Rapoza RJ. Design principles and performance of bioresorbable polymeric vascular scaffolds. EuroIntervention. 2009;5: F15-F22.10.4244/EIJV5IFA322100671Search in Google Scholar

62. Iqbal J, Sumaya W, Tatman V, et al. Incidence and predictors of stent thrombosis: a single-centre study of 5,833 consecutive patients undergoing coronary artery stenting. EuroIntervention. 2013;9:62-69.10.4244/EIJV9I1A1023685296Search in Google Scholar

63. Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation. 2011;123:779-797.Search in Google Scholar

64. Bourantas CV, Raber L, Zaugg S, et al. Impact of local endothelial shear stress on neointima and plaque following stent implantation in patients with ST-elevation myocardial infarction: A subgroup-analysis of the COMFORTABLE AMI-IBIS 4 trial. Int J Cardiol. 2015;186:178-85.10.1016/j.ijcard.2015.03.16025828109Search in Google Scholar

65. Gyongyosi M, Yang P, Khorsand A, Glogar D. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. Austrian Wiktor Stent Study Group and European Paragon Stent Investigators. J Am Coll Cardiol. 2000;35:1580-1589.Search in Google Scholar

66. Gomez-Lara J, Brugaletta S, Farooq V, et al. Angiographic geometric changes of the lumen arterial wall after bioresorbable vascular scaffolds and metallic platform stents at 1-year follow-up. JACC Cardiovasc Interv. 2011;4:789-799.10.1016/j.jcin.2011.04.00921777888Search in Google Scholar

67. Bourantas CV, Papafaklis MI, Lakkas L, et al. Fusion of optical coherence tomographic and angiographic data for more accurate evaluation of the endothelial shear stress patterns and neointimal distribution after bioresorbable scaffold implantation: comparison with intravascular ultrasound-derived reconstructions. Int J Cardiovasc Imaging. 2014;30:485-494.10.1007/s10554-014-0374-324458955Search in Google Scholar

68. Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus- eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36:3332-3342.10.1093/eurheartj/ehv43526330419Search in Google Scholar

69. Ellis SG, Kereiakes DJ, Metzger DC, et al. Investigators AI. Everolimuseluting bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373:1905-1915.10.1056/NEJMoa150903826457558Search in Google Scholar

70. Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Investigators A. Bioresorbable Scaffolds versus Metallic Stents in Routine PCI. N Engl J Med. 2017;376:2319-2328.10.1056/NEJMoa161495428402237Search in Google Scholar

71. Collet C, Asano T, Miyazaki Y, et al. Late thrombotic events after bioresorbable scaffold implantation: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J. 2017;38:2559-2566.10.1093/eurheartj/ehx15528430908Search in Google Scholar

72. Otsuka F, Pacheco E, Perkins LE, et al. Long-term safety of an everolimuseluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model. Circ Cardiovasc Interv. 2014;7:330-342.10.1161/CIRCINTERVENTIONS.113.00099024895447Search in Google Scholar

73. Raber L, Brugaletta S, Yamaji K, et al. Very late scaffold thrombosis: intracoronary imaging and histopathological and spectroscopic findings. J Am Coll Cardiol. 2015;66:1901-1914.10.1016/j.jacc.2015.08.85326493663Search in Google Scholar

74. Finn AV, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents: Importance of delayed healing. Arterioscler Thromb Vasc Biol. 2007;27:1500-1510.10.1161/ATVBAHA.107.14422017510464Search in Google Scholar

75. Foin N, Gutierrez-Chico JL, Nakatani S, et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance: implications for the management of incomplete stent apposition. Circ Cardiovasc Interv. 2014;7:180-189.10.1161/CIRCINTERVENTIONS.113.00093124642998Search in Google Scholar

76. Holme PA, Orvim U, Hamers MJAG, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol. 1997;17:646-653.10.1161/01.ATV.17.4.646Search in Google Scholar

77. Martorell J, Santoma P, Kolandaivelu K, et al. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovasc Res. 2014;103:37-46.10.1093/cvr/cvu124467088424841070Search in Google Scholar

78. Nam D, Ni CW, Rezvan A, et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535-H1543.10.1152/ajpheart.00510.2009277076419684185Search in Google Scholar

79. Bark DLJr, Ku DN. Wall shear over high degree stenoses pertinent to atherothrombosis. J Biomechanics. 2010;43:2970-2977.10.1016/j.jbiomech.2010.07.01120728892Search in Google Scholar

80. Bark DL, Para AN, Ku DN. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol Bioeng. 2012;109:2642-2650.10.1002/bit.2453722539078Search in Google Scholar

81. Fukumoto Y, Hiro T, Fujii T, et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol. 2008;51:645-650.10.1016/j.jacc.2007.10.03018261684Search in Google Scholar

82. Brugaletta S, Radu MD, Garcia-Garcia HM, et al. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque? Atherosclerosis. 2012;221:106-112.Search in Google Scholar

83. Lane JP, Perkins LE, Sheehy AJ, et al. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. JACC Cardiovasc Interv. 2014;7:688-695.10.1016/j.jcin.2013.11.02424835327Search in Google Scholar

84. Tateishi H, Suwannasom P, Sotomi Y, et al. investigators of the ABSORB Cohort B study. Edge Vascular Response After Resorption of the Everolimus-Eluting Bioresorbable Vascular Scaffold – A 5-Year Serial Optical Coherence Tomography Study. Circ J. 2016;80:1131-41.10.1253/circj.CJ-15-132526936236Search in Google Scholar

85. Tamburino C, Latib A, van Geuns RJ, et al. Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention. 2015;11:45-52.10.4244/EIJY15M01_0525599676Search in Google Scholar

eISSN:
2501-8132
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine