Cite

[1] C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells, J. M. Roig, I. Silva, A. E. Johnson et al, “An open access database for the evaluation of heart sound algorithms”, Physiological Measurement 37 (12), (2016) 21-81.10.1088/0967-3334/37/12/2181719939127869105Search in Google Scholar

[2] S. Sun, Z. Jiang, H. Wang, and Y. Fang, “Automatic moment segmentation peak detection analysis of heart sound pattern via short-time modified Hilbert transform”, Computer methods programs in biomedicine 114 (3) (2014) 219-230.10.1016/j.cmpb.2014.02.00424657095Search in Google Scholar

[3] Z. Yan, Z. Jiang, A. Miyamoto, and Y. Wei, “The moment segmentation analysis of heart sound pattern”, Computer methods programs in biomedicine 98 (2) (2010) 140-150.10.1016/j.cmpb.2009.09.00819854530Search in Google Scholar

[4] P. Sedighian, A. W. Subudhi, F. Scalzo, and S. Asgari, “Pediatric heart sound segmentation using hidden Markov model”, Engineering in Medicine Biology Society (EMBC) 2014 36th Annual International Conference of the IEEE, IEEE, 2014,, pp. 5490-5493.10.1109/EMBC.2014.694486925571237Search in Google Scholar

[5] P. Bentley, G. Nordehn, M. Coimbra, S. Mannor, and R. Getz, Pascal classifying heart sounds challenge 2011 (chsc2011) results See http://www.peterjbentley.com/heartchallenge/index.html.Search in Google Scholar

[6] S. Ari, K. Hembram, and G. Saha, “Detection of cardiac abnormality from PCG signal using IMS based least fifth-square SVM classifier”, Expert Systems with Applications 37 (12) (2010) 8019-8026.10.1016/j.eswa.2010.05.088Search in Google Scholar

[7] Y. Zheng, X. Guo, and X. Ding, “A novel hybrid energy fraction entropy-based approach for systolic heart murmurs identification”, Expert Systems with Applications 42 (5) (2015) 2710-721.10.1016/j.eswa.2014.10.051Search in Google Scholar

[8] H. Uguz, “A biomedical system based on artificial neural network principal component analysis for diagnosis of the heart valve diseases” Journal of medical systems 36 (1) (2012) 61-72.10.1007/s10916-010-9446-720703748Search in Google Scholar

[9] A. Gharehbaghi, I. Ekman, P. Ask, E. Nylander, and B. Janerot-sjoberg, “Assessment of aortic valve stenosis severity using intelligent phonocardiography” International journal of cardiology 198 (2015) 58-60.Search in Google Scholar

[10] R. Sarac Oglu, “Hiden Markov model-based classification of heart valve disease with PCA for dimension reduction” Engineering Applications of Artificial Intelligence 25 (7) (2012) 1523-1528.10.1016/j.engappai.2012.07.005Search in Google Scholar

[11] A. Quiceno-Manrique, J. Godino-Llorente, M. Blanco-velasco, and G. Castellanos-Dominguez, “Selection Of Dynamic Features Based On Time-frequency Representations For Heart Murmur Detection From Phonocar-diographic Signals”, Signals of biomedical engineering 38 (1) (2010) 118-137.10.1007/s10439-009-9838-319921435Search in Google Scholar

[12] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor analysis for speaker verification”, IEEE Transactions on Audio, Speech, Language Processing 19 (4) (2011) 788-798.10.1109/TASL.2010.2064307Search in Google Scholar

[13] N. Dehak, P. A. Torres-carrasquillo, D. Reynolds, and R. Dehak, “Language recognition via i-vectors dimensionality reduction”, Twelfth annual conference of the international speech communication association 2011.10.21437/Interspeech.2011-328Search in Google Scholar

[14] D. Martinez, O. Plchot, L. Burget, O. Glembek, and P. Matějka, “Language recognition in i-vectors space”, Twelfth Annual Conference of the International Speech Communicatio Association 2011.10.21437/Interspeech.2011-329Search in Google Scholar

[15] M. H. Bahari, R. Saeidi, D. Van Leeuwen et al, “Accent recognition using i-vector Gaussian mean supervector Gaussian posterior probability supervector for spontaneous telephone speech”.Search in Google Scholar

[16] R. Xia and Y. Liu, “Using i-vector space model for emotion recognition”, Thirteenth Annual Conference of the International Speech Communication Association 2012.10.21437/Interspeech.2012-128Search in Google Scholar

[17] H. Khaki and E. Erzin, “Continuous emotion tracking using total variability space”, Sixteenth Annual Conference of the International Speech Communication Association 2015.10.21437/Interspeech.2015-324Search in Google Scholar

[18] H. Eghbal-Zadeh, B. Lehner, M. Dorfer, and G. Widmer, “Cp-jku submissions for dcase-2016: A hybrid approach using binaural i-vectors deep convolutional neural networks”, IEEE AASP Challenge on Detection Classification of Acoustic Scenes Events (DCASE).Search in Google Scholar

[19] M. Adiban, H. Sameti, N. Maghsoodi, and S. Shahsavari, “Sut system description for anti-spoofing 2017 challenge”, Proceedings of the 29th Conference on Computational Linguistics Speech Processing (ROCLING 2017) 2017, pp. 264-275.Search in Google Scholar

[20] R. Wahid, N. I. Ghali, H. S. Own, T. -h Kim, and A. E. Hassanien, “A Gaussian mixture models approach to human heart signal verification using different feature extraction algorithms”, Computer Applications for Bio-technology Multimedia, Ubiquitous City, Springer, 2012,, pp. 16-24.10.1007/978-3-642-35521-9_3Search in Google Scholar

[21] G. D. Clifford, C. Liu, B. Moody, J. Millet, S. Schmidt, Q. Li, I. Silva, and R. G. Mark, “Recent advances in heart sound analysis”, Physiological Measurement 38 (8) (2017) E10-E25, DOI: 10, 1088/1361-6579/aa7ec8 URL https://doi.org/10.1088%2F1361-6579%2Faa7ec8.10.1088/1361-6579/aa7ec828696334Search in Google Scholar

[22] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, “Ensemble of feature-based deep learning-based classifiers for detection of abnormal heart sounds”, 2016 Computing in Cardiology Conference (CinC) (2016) 621-624.10.22489/CinC.2016.182-399Search in Google Scholar

[23] A. K. Dwivedi, S. A. Imtiaz, and E. Rodriguez-villegas, “Algorithms for automatic analysis classification of heart sounds a systematic review”, IEEE Access 7 (2019) 8316-8345.10.1109/ACCESS.2018.2889437Search in Google Scholar

[24] F. Renna, J. Oliveira, and M. T. Coimbra, “Convolutional neural networks for heart sound segmentation”, 2018 26th European Signal Processing Conference (EUSIPCO) IEEE, 2018, pp. 757-761.10.23919/EUSIPCO.2018.8553120Search in Google Scholar

[25] F. Noman, C.-M. Ting, S.-H. Salleh, and H. Ombao, “Short-segment heart sound classification using an ensemble of deep convolutional neural networks”, ICASSP 2019-2019 IEEE International Conference on Acoustics Speech Signal Processing (ICASSP), IEEE, 2019, pp. 1318-1322.10.1109/ICASSP.2019.8682668Search in Google Scholar

[26] A. Moukadem, A. Dieterlen, N. Hueber, and C. Brandt, “Localization of heart sounds based on s-transform radial basis function neural network”, 15th Nordic-Baltic Conference on Biomedical Engineering Medical Physics (NBC 2011) Springer, 2011, pp. 168-171.10.1007/978-3-642-21683-1_42Search in Google Scholar

[27] A. Castro, T. T. Vinhoza, S. S. Mattos, and M. T. Coimbra, “Heart sound segmentation of pediatric auscultations using wavelet analysis”, Engineering in Medicine Biology Society (EMBC) 2013 35th Annual International Conference of the IEEE, IEEE, 2013, pp. 3909-3912.10.1109/EMBC.2013.661039924110586Search in Google Scholar

[28] S. Patidar, R. B. Pachori, and N. Garg, “Automatic diagnosis of septal defects based on tunable-q wavelet transform of cardiac sound signals”, Expert Systems with Applications 42 (7) (2015) 3315-3326.10.1016/j.eswa.2014.11.046Search in Google Scholar

[29] A. A. Sepehri, J. Hancq, T. Dutoit, A. Gharehbaghi, A. Kocharian, and A. Kiani, “Computerized screening of children congenital heart diseases”, Computer methods programs in biomedicine 92 (2) (2008) 186-192.10.1016/j.cmpb.2008.06.01518718691Search in Google Scholar

[30] Z. Abduh, E. A. Nehary, M. A. Wahed, and Y. M. Kadah, “Classification of heart sounds using fractional Fourier transform based mel-frequency spectral coeficients stacked autoencoder deep neural network”, Journal of Medical Imaging Health Informatics 9 (1) (2019) 1-8.10.1166/jmihi.2019.2568Search in Google Scholar

[31] S. E. Schmidt, C. Holst-Hansen, C. Graff, E. Toft, and J. J. Struijk, “Segmentation of heart sound recordings by a duration-dependent hidden Markov model”, Physiological measurement 31 (4) (2010) 513.10.1088/0967-3334/31/4/00420208091Search in Google Scholar

[32] D. B. Springer, L. Tarassenko, and G. D. Clifford, “Logistic regression-HSMM-based heart sound segmentation”, IEEE Transactions on Biomedical Engineering 63 (4) (2016) 822-832.Search in Google Scholar

[33] H. Uguz, “Adative neuro-fuzzy inference system for diagnosis of the heart valve diseases using wavelet transform with entropy”, Neural Computing Applications 21 (7) (2012) 1617-1628.10.1007/s00521-011-0610-xSearch in Google Scholar

[34] M. R. Hasan, M. Jamil, M. Rahman et al, “Speaker identification using MEL frequency cepstral coeficients”, 1(4).Search in Google Scholar

[35] V. Tiwari, “MFCC its applications in speaker recognition”, International journal on emerging technologies 1 (1) (2010) 19-22.Search in Google Scholar

[36] H. Zeinali, A. Mirian, H. Sameti, and B. Babaali, “Non-speaker information reduction from cosine similarity scoring in i-vector based speaker verification”, Computers & Electrical Engineering 48 (2015) 226-238.10.1016/j.compeleceng.2015.09.003Search in Google Scholar

[37] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted Gaussian mixture models”, Digital signal processing 10 (1-3) (2000) 19-41.10.1006/dspr.1999.0361Search in Google Scholar

[38] W. M. Campbell, D. E. Sturim, D. A. Reynolds, and A. Solomonoff, “SVM based speaker verification using a GMM supervector kernel NAP variability compensation”, Acoustics, Speech Signal Processing, 2006, ICASSP 2006 Proceedings, 2006 IEEE International Conference on, vol. 1, IEEE, 2006, pp. I-I.Search in Google Scholar

[39] A. Solomonoff, C. Quillen, and W. M. Campbell, “Channel compensation for SVM speaker recognition”, Odyssey, vol. 4, Citeseer, 2004, pp. 219-226.Search in Google Scholar

[40] A. Solomonoff, W. M. Campbell, and I. Boardman, “Advances in channel compensation for SVM speaker recognition”, Acoustics Speech, Signal Processing, 2005, Pp, I-629 Proceedings, (ICASSP’05), IEEE International Conference, vol, 1, IEEE, 2005, pp, I-629,, 24.Search in Google Scholar

[41] A. O. Hatch, S. Kajarekar, and A. Stolcke, “Within-class covariance normalization for SVM-based speaker recognition”, Ninth international conference on spoken language processing 2006.10.21437/Interspeech.2006-183Search in Google Scholar

[42] N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Dumouchel, L. Burget, V. Hubeika, and F. Castaldo, “Support vector machines joint factor analysis for speaker verification”,.Search in Google Scholar

[43] C. R. Rao, “The utilization of multiple measurements in problems of biological classification”, Journal of the Royal Statistical Society, Series B Methodological 10 (2) (1948) 159-203.10.1111/j.2517-6161.1948.tb00008.xSearch in Google Scholar

[44] L. Van Der Maaten, E. Postma, and J. Van Den Herik, “Dimensionality reduction: A comparative”, J Mach Learn Res 10 (2009) 66-71.Search in Google Scholar

[45] L. Van Der Maaten, E. Postma, and J. Van Den Herik, “Principal component analysis”, Wiley interdisciplinary reviews: computational statistics 2 (4) (2010) 433-459.Search in Google Scholar

[46] D. Jang, H. Park, and G. Choi, “Estimation of leakage ratio using principal component analysis artificial neural network in water distribution systems”, Sustainability 10 (3) (2018) 750,.10.3390/su10030750Search in Google Scholar

[47] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, arXiv preprint arXiv:1312, 6114.Search in Google Scholar

[48] D. P. Kingma and M. Welling, “D. Reynolds Gaussian mixture models”, Encyclopedia of biometrics (2015) 827-832.10.1007/978-1-4899-7488-4_196Search in Google Scholar

[49] D. A. Reynolds, “Automatic speaker recognition using Gaussian mixture speaker models”, The Lincoln Laboratory Journal Citeseer, 1995.10.1109/89.365379Search in Google Scholar

[50] B. Bozkurt, I. Germanakis, and Y. Stylianou, “A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection”, Computers in biology medicine.Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other