Open Access

A study of properties of ZrO2 thin films deposited by magnetron sputtering under different plasma parameters: Biomedical application


Cite

[1] G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, “Biomedical Implants: Corrosion and its Prevention-A Review”, Recent Patents on Corrosion Science, vol. 2, pp. 40–54, 2010.10.2174/1877610801002010040Search in Google Scholar

[2] L. Bait, L. Azouz, N. Madaoui, N. Saoula, “Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications”, Applied Surface Science, vol. 72, pp. 395–397, 2017.10.1016/j.apsusc.2016.07.101Search in Google Scholar

[3] K. Wheeler, L. James, “Fatigue behavior of type 316 stainless steel under simulated body conditions”, Journal of Biomedical Materials Research Part A, vol. 267, pp. 81–85, 1971.10.1002/jbm.820050313Search in Google Scholar

[4] V. Vancoppenolle, P.-Y. Jouan, A. Ricard, M. Wautelet, J.-P. Dauchot, M. Hecq, “Oxygen active species in an Ar - O2 magnetron discharge for titanium oxide deposition”, Applied Surface Science, vol. 249, pp. 205–255, 2003.10.1016/S0169-4332(02)01085-1Search in Google Scholar

[5] N. Li, M. Suzuki, Y. Abe, M. Kawamura, K. Sasaki, H. Itoh, et al, “Effects of substrate temperature on the ion conductivity of hydrated ZrO2 thin films prepared by reactive sputtering in H2O atmosphere”, Solar Energy Materials and Solar Cells, vol. 160, pp. 95–99, 2012.10.1016/j.solmat.2011.03.037Search in Google Scholar

[6] J. Vlček, J. Rezek, J. Houška, R. Čerstvý, R. Bugyi, “Process stabilization and a significant enhancement of the deposition rate in reactive high-power impulse magnetron sputtering of ZrO2 and Ta2O5 films”, Surface and Coatings Technology, vol. 236, pp. 550–556, 2013.10.1016/j.surfcoat.2013.10.052Search in Google Scholar

[7] S. Zhao, F. Ma, K. Xu, H. Liang, “Optical properties and structural characterization of bias sputtered ZrO2 films”, Journal of Alloys and Compounds, vol. 453, pp. 453–457, 2008.10.1016/j.jallcom.2006.11.134Search in Google Scholar

[8] W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of materials research, vol. 7, pp. 1564–1583, 1992.Search in Google Scholar

[9] M. Wong, W. Chia, J. Schneider, P. Yashar, W. Sproul, S. Barnett, “High-Rate Reactive DC Magnetron Sputtering of ZrOx “, Surface and Coatings Technology, vol. 86-87, pp. 381–387, 1996.10.1016/S0257-8972(96)03038-1Search in Google Scholar

[10] A. Thaveedeetrakul, N. Witit-anun, V. Boonamnuayvitaya, “The role of target-to-substrate distance on the DC magnetron sputtered zirconia thin films bioactivity”, Applied Surface Science, vol. 258, pp. 2612–2619, 2012.Search in Google Scholar

[11] Z. Ji, J. Haynes, M. Ferber, J. Rigsbee, “Metastable tetragonal zirconia formation and transformation in reactively sputter deposited zirconia coatings”, Surface and Coatings Technology, vol. 135, pp. 109–117, 2001.10.1016/S0257-8972(00)00910-5Search in Google Scholar

[12] J. Park, J. K. Heo, Y.-C. Kang, “The properties of RF sputtered zirconium oxide thin films at different plasma gas ratio”, Bull Korean Chem Soc., vol. 31, pp. 397, 2010.10.5012/bkcs.2010.31.02.397Search in Google Scholar

[13] C. Ma, F. Lapostolle, P. Briois, Q. Zhang, “Effect of O2 gas partial pressure on structures and dielectric characteristics of rf sputtered ZrO2 thin films”, Applied surface science, vol. 253, pp. 8718–8724, 2007.Search in Google Scholar

[14] P. Kondaiah, S. Uthanna, G. M. Rao, “Substrate bias voltage influence on structural, electronic and dielectric properties of ZrO2 gate dielectrics”, Nanoscience, Engineering and Technology (ICONSET), International Conference on: IEEE, pp. 616–619, 2011.10.1109/ICONSET.2011.6168046Search in Google Scholar

[15] D. Joslin, W. Oliver, “A new method for analyzing data from continuous depth-sensing microindentation tests”, Journal of Materials Research, vol. 5, pp. 123–126, 1990.10.1557/JMR.1990.0123Search in Google Scholar

[16] T. Tsui, G. Pharr, W. Oliver, C. Bhatia, R. White, S. Anders, et al, “Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks”, MRS Online Proceedings Library Archive, vol. 383, 1995.10.1557/PROC-383-447Search in Google Scholar

[17] N. Savvides, T. Bell, “Hardness and elastic modulus of diamond and diamond-like carbon films”, Thin Solid Films, vol. 228, pp. 289–292, 1993.10.1016/0040-6090(93)90618-YSearch in Google Scholar

[18] T.-H. Fang, S.-R. Jian, D.-S. Chuu, “Nanomechanical properties of TiC, TiN and TiCN thin films using scanning probe microscopy and nanoindentation”, Applied Surface Science, vol. 228, pp. 365–372, 2004.10.1016/j.apsusc.2004.01.053Search in Google Scholar

[19] Z. Wu, X. Tian, Z. Wang, C. Gong, S. Yang, CM. Tan, et al, “Microstructure and mechanical properties of CrN films fabricated by high power pulsed magnetron discharge plasma immersion ion implantation and deposition”, Applied Surface Science, vol. 258, pp. 242–246, 2011.10.1016/j.apsusc.2011.08.039Search in Google Scholar

[20] E. McCafferty, “Validation of corrosion rates measured by the Tafel extrapolation method”, Corrosion Science, vol. 47, pp. 3202–3215, 2005.Search in Google Scholar

[21] R. Kotoka, S. Yarmolenko, D. Pai, J. Sankar, “Corrosion Behavior of Reactive Sputtered Al2O3 and ZrO2 Thin Films on Mg Disk Immersed in Saline Solution”, Journal of Materials Science & Technology, vol. 31, pp. 873–880, 2015.10.1016/j.jmst.2015.07.020Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other