Cite

[1] F. Wooten, Optical Properties of Solids, New York: Academic Press, 1972.Search in Google Scholar

[2] E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: Applications to aluminum”, Phys. Rev. B, vol. 22, pp. 1612–1628, 1980.10.1103/PhysRevB.22.1612Search in Google Scholar

[3] D. Y. Smith, “Dispersion theory, sum rules, and their application to the analysis of optical data”, In: Handbook of Optical Constants of Solids (E. D. Palik, ed.), vol. 1, pp. 35–68, Academic Press, 1985.10.1016/B978-0-08-054721-3.50008-3Search in Google Scholar

[4] V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research, Berlin: Springer, 2005.Search in Google Scholar

[5] M. Dressel and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge: University Press, 2002.10.1017/CBO9780511606168Search in Google Scholar

[6] D. Franta, D. Nečas, and L. Zajíčková, “Application of Thomas-Reiche-Kuhn sum rule to construction of advanced dispersion models”, Thin Solid Films, vol. 534, pp. 432–441, 2013.10.1016/j.tsf.2013.01.081Search in Google Scholar

[7] D. Franta, J. Vohánka, and M. Čermák, “Universal dispersion model for characterization of thin films over wide spectral range”, In: Optical Characterization of Thin Solid Films (O. Stenzel and M. Ohlídal, eds.), vol. 64, pp. 31–82, Springer, 2018.10.1007/978-3-319-75325-6_3Search in Google Scholar

[8] D. Franta, D. Nečas, L. Zajíčková, and I. Ohlídal, “Broadening of dielectric response and sum rule conservation”, Thin Solid Films, vol. 571, pp. 496–501, 2014.10.1016/j.tsf.2013.11.148Search in Google Scholar

[9] D. Franta, D. Nečas, L. Zajíčková, and I. Ohlídal, “Utilization of the sum rule for construction of advanced dispersion model of crystalline silicon containing interstitial oxygen”, Thin Solid Films, vol. 571, pp. 490–495, 2014.10.1016/j.tsf.2014.03.059Search in Google Scholar

[10] D. Franta, D. Nečas, L. Zajíčková, and I. Ohlídal, “Dispersion model of two-phonon absorption: application to c-Si”, Opt. Mater. Express, vol. 4, pp. 1641–1656, 2014.10.1364/OME.4.001641Search in Google Scholar

[11] D. Franta, A. Dubroka, C. Wang, A. Giglia, J. Vohánka, P. Franta, and I. Ohlídal, “Temperature-dependent dispersion model of oat zone crystalline silicon”, Appl. Surf. Sci., vol. 421, pp. 405–419, 2017.10.1016/j.apsusc.2017.02.021Search in Google Scholar

[12] D. Franta, P. Franta, J. Vohánka, M. Čermák, and I. Ohlídal, “Determination of thicknesses and temperatures of crystalline silicon wafers from optical measurements in the far infrared region”, J. Appl. Phys., vol. 123, pp. 185707, 2018.10.1063/1.5026195Search in Google Scholar

[13] ISO 1:2016 – Geometrical product specifications (GPS) – Standard reference temperature for the specification of geometrical and dimensional properties.Search in Google Scholar

[14] D. Franta, D. Nečas, et al, Software for optical characterization newAD2, http://newad.physics.muni.cz.Search in Google Scholar

[15] H. Ibach, “Thermal Expansion of Silicon and Zinc Oxide (I)”, Phys. Status Solidi, vol. 31, pp. 625–634, 1969.10.1002/pssb.19690310224Search in Google Scholar

[16] T. Middelmann, A. Walkov, G. Bartl, and R. Schödel, “Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K”, Phys. Rev. B, vol. 92, pp. 174113, 2015.10.1103/PhysRevB.92.174113Search in Google Scholar

[17] M. K. Gupta, R. Mittal, B. Singh, S. K. Mishra, D. T. Adroja, A. D. Fortes, and S. L. Chaplot, “Phonons and anomalous thermal expansion behavior of H2O and D2O ice Ih”, Phys. Rev. B, vol. 98, pp. 104301, 2018.Search in Google Scholar

[18] G. K. White, “Thermal expansion of reference materials: copper, silica and silicon”, J. Phys. D Appl. Phys., vol. 6, pp. 2070–2078, 1973.10.1088/0022-3727/6/17/313Search in Google Scholar

[19] T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleightoddini, “Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 “, Science, vol. 272, pp. 90–92, 1996.10.1126/science.272.5258.90Search in Google Scholar

[20] B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W. Chapman, and A. P. Wilkinson, “Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF3 “, J. Am. Chem. Soc., vol. 132, pp. 15496–15498, 2010.10.1021/ja106711vSearch in Google Scholar

[21] H. Watanabe, N. Yamada, and M. Okaji, “Linear thermal expansion coeficient of silicon from 293 to 1000 K”, Int. J. Thermophys., vol. 25, pp. 221–236, 2004.10.1023/B:IJOT.0000022336.83719.43Search in Google Scholar

[22] M. Balkanski, “Photon-phonon interactions in solids”, In: Optical properties of solids (F. Abeles, ed.), pp. 529–651, 1972.Search in Google Scholar

[23] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer, 2001.Search in Google Scholar

[24] C. Kittel, Introduction to Solid State Physics, New York: Wiley, 5th ed., 1976.Search in Google Scholar

[25] G. G. Macfarlane and V. Roberts, “Infrared absorption of silicon near the lattice edge”, Phys. Rev., vol. 98, pp. 1865–1866, 1955.10.1103/PhysRev.98.1865Search in Google Scholar

[26] D. Franta, M. Čermák, J. Vohánka, and I. Ohlídal, “Dispersion models describing interband electronic transitions combining Tauc’s law and Lorentz model”, Thin Solid Films, vol. 631, pp. 12–22, 2017.10.1016/j.tsf.2017.03.051Search in Google Scholar

[27] D. Campi and C. Coriasso, “Prediction of optical properties of amorphous tetrahedrally bounded materials”, J. Appl. Phys., vol. 64, pp. 4128–4134, 1988.10.1063/1.341323Search in Google Scholar

[28] G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region”, Appl. Phys. Lett., vol. 69, pp. 371–373, 1996.10.1063/1.118064Search in Google Scholar

[29] G. E. Jellison, Jr. and F. A. Modine, “Erratum: Parameterization of the optical functions of amorphous materials in the interband region”, Appl. Phys. Lett., vol. 69, pp. 2137, 1996.10.1063/1.118155Search in Google Scholar

[30] A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics”, J. Appl. Phys., vol. 92, pp. 2424–2436, 2002.10.1063/1.1497462Search in Google Scholar

[31] D. Franta, D. Nečas, I. Ohlídal, and A. Giglia, “Dispersion model for optical thin fims applicable in wide spectral range”, In: Optical Systems Design 2015: Optical Fabrication, Testing, and Metrology V, vol. 9628 of Proc. SPIE, pp. 96281U, 2015.10.1117/12.2190104Search in Google Scholar

[32] D. Franta, D. Nečas, I. Ohlídal, and A. Giglia, “Optical characterization of SiO2 thin films using universal dispersion model over wide spectral range”, In: Photonics Europe 2016: Optical Micro- and Nanometrology VI, vol. 9890 of Proc. SPIE, pp. 989014, 2016.10.1117/12.2227580Search in Google Scholar

[33] D. Franta, D. Nečas, A. Giglia, P. Franta, and I. Ohlídal, “Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium uoride”, Appl. Surf. Sci., vol. 421, pp. 424–429, 2017.10.1016/j.apsusc.2016.09.149Search in Google Scholar

[34] P. B. Allen and M. Cardona, “Theory of the temperature dependence of the direct gap of germanium”, Phys. Rev. B, vol. 23, 1981.10.1103/PhysRevB.23.1495Search in Google Scholar

[35] L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium”, Phys. Rev. B, vol. 30, pp. 1979–1991, 1984.10.1103/PhysRevB.30.1979Search in Google Scholar

[36] P. Lautenschlager, P. B. Allen, and M. Cardona, “Temperature dependence of band gaps in Si and Ge”, Phys. Rev. B, vol. 31, pp. 2163–2171, 1985.10.1103/PhysRevB.31.2163Search in Google Scholar

[37] P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon”, Phys. Rev. B, vol. 36, pp. 4821–4830, 1987.10.1103/PhysRevB.36.4821Search in Google Scholar

[38] H. L. Smith, Y. Shen, D. S. Kim, F. C. Yang, C. P. Adams, C. W. Li, D. L. Abernathy, M. B. Stone, and B. Fultz, “Temperature dependence of phonons in FeGe2 “, Phys. Rev. Mater., vol. 2, pp. 103602, 2018.10.1103/PhysRevMaterials.2.103602Search in Google Scholar

[39] C. Keffer, T. M. Hayes, and A. Bienenstock, “PbTe Debye-Waller factors and band-gap temperature dependence”, Phys. Rev. Lett., vol. 21, pp. 1676–1678, 1968.10.1103/PhysRevLett.21.1676Search in Google Scholar

[40] H. Haas, C. Z. Wang, K. M. Ho, M. Fähnle, and C. Elsässer, “Temperature dependence of the phonon frequencies of molybdenum: a tightbinding molecular dynamics study”, J. Phys. Condes. Matter, vol. 11, pp. 5455–5462, 1999.10.1088/0953-8984/11/28/306Search in Google Scholar

[41] B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium”, In: Optomechanical Technologies for Astronomy, vol. 6237 of Proc. SPIE, pp. 62732J, 2006.10.1117/12.672850Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other