Open Access

Identification of nonlinear block-oriented systems with backlash and saturation

   | May 13, 2019

Cite

[1] H. Chen, F. Ding, and Y. Xiao, “Decomposition-based Least Squares Parameter Estimation Algorithm for Input Nonlinear Systems using the Key Term Separation Technique”, Nonlinear Dynamics vol. 79, no. 3, 2015, pp. 2027-2035.10.1007/s11071-014-1791-5Search in Google Scholar

[2] K. Deng and F. Ding, “Newton Iterative Identification Method for an Input Nonlinear Finite Impulse Response System with Moving Average Noise using the Key Variables Separation Technique”, Nonlinear Dynamics vol. 76, no. 2, 2014, pp. 1195-1202.10.1007/s11071-013-1202-3Search in Google Scholar

[3] F. Ding, F. Wang, L. Xu, and M. Wu, “Decomposition based Least Squares Iterative Identification Algorithm for Multivariate Pseudo-Linear ARMA Systems using the Data Filtering”, Journal of the Franklin Institute vol. 354, no. 3, 2017, pp. 1321-1339.10.1016/j.jfranklin.2016.11.030Search in Google Scholar

[4] G. Mzyk, “Instrumental Variables for Nonlinearity Recovering in Block-Oriented Systems Driven by Correlated Signals”, International Journal of Systems Science vol. 46, no. 2, 2015, pp. 246-254.10.1080/00207721.2013.775682Search in Google Scholar

[5] J. Li, F. Ding, and L. Hua, “Maximum likelihood Newton recursive the Newton iterative estimation algorithms for Hammer-stein CARAR systems”, Nonlinear Dynamics vol. 75, no 1-2, 2014, pp. 235-245.10.1007/s11071-013-1061-ySearch in Google Scholar

[6] J. Ma and F. Ding, “Filtering-Based Multistage Recursive Identification Algorithm for an Input Nonlinear Output-Error Autoregressive System by Using the Key Term Separation Technique”, Circuits Systems, Signal Processing vol. 36, no. 2, 2017, pp. 577-599.10.1007/s00034-016-0333-4Search in Google Scholar

[7] J. Ma, W. Xiong, F. Ding, A. Alsaedi, and T. Hayat, “Data Filtering based Forgetting Factor Stochastic Gradient Algorithm for Hammerstein Systems with Saturation Preload Nonlinearities”, Journal of the Franklin Institute vol. 353, no. 16, 2016, pp. 4280-4299.10.1016/j.jfranklin.2016.07.025Search in Google Scholar

[8] V. Saini and L. Dewan, “Instrument Variable Method Based on Nonlinear Transformed Instruments for Hammerstein System Identification”, Journal of Vibration Control vol. 24, no 13, 2018, pp. 2802-2814.10.1177/1077546317694770Search in Google Scholar

[9] Q. Shen and F. Ding, “Hierarchical Multi-Innovation Extended Stochastic Gradient Algorithms for Input Nonlinear Multivariable OEMA Systems by the Key-Term Separation Principle”, Nonlinear Dynamics vol. 85, no 1, 2016, pp. 499-507.10.1007/s11071-016-2701-9Search in Google Scholar

[10] J. Vörös, “Iterative Algorithm for Parameter Identification of Hammerstein Systems with Two-Segment Nonlinearities”, IEEE Trans. Automatic Control vol. 44, no 11, 1999, pp. 2145-2149.10.1109/9.802933Search in Google Scholar

[11] X. Wang, F. Ding, T. Hayat, and A. Alsaedi, “Combined State Multi-Innovation Parameter Estimation for an Input Non-Linear State-Space System using the Key Term Separation”, IET Control Theory & Applications vol. 10, no 13, 2016, pp. 1503-1512.10.1049/iet-cta.2015.1056Search in Google Scholar

[12] X. Xu, F. Wang, G. Liu, and F. Qian, “Identification of Hammerstein Systems using Key-Term Separation Principle, Auxiliary Model Improved Particle Swarm Optimization Algorithm, IET Signal Processing vol. 7, no 8, 2013, pp. 766-773.10.1049/iet-spr.2013.0042Search in Google Scholar

[13] L. Zhou, X. Li, L. Shan, J. Xia, and W. Chen, “Hierarchical Recursive Least Squares Parameter Estimation of Non-Uniformly Sampled Hammerstein Nonlinear Systems Based on Kalman Filter”, Journal of the Franklin Institute vol. 354, no 10, 2017, pp. 4231-4246.10.1016/j.jfranklin.2017.02.010Search in Google Scholar

[14] J. Chen, X. Lu, and R. Ding, “Gradient-Based Iterative Algorithm for Wiener Systems with Saturation Dead-Zone Nonlinearities”, Journal of Vibration Control vol. 20, no 4, 2014, pp. 634-640.10.1177/1077546312466563Search in Google Scholar

[15] F. Ding, X. Liu, and M. Liu, “The Recursive Least Squares Identification Algorithm for a Class of Wiener Nonlinear Systems”, Journal of the Franklin Institute vol. 353, no 7, 2016, pp. 1518–1526.10.1016/j.jfranklin.2016.02.013Search in Google Scholar

[16] A. Janczak, “Instrumental Variables Approach to Identification of a Class of MIMO Wiener Systems”, Nonlinear Dynamics vol. 48, 2007, pp. 275-284.10.1007/s11071-006-9088-ySearch in Google Scholar

[17] S. Jing, T. Pan, and Z. Li, “Variable Knot-Based Spline Approximation Recursive Bayesian Algorithm for the Identification of Wiener Systems with Process Noise”, Nonlinear Dynamics vol. 90, no. 4, 2017, pp. 2293–2303.10.1007/s11071-017-3803-8Search in Google Scholar

[18] K. Kazlauskas and R. Pupeikis, “On Intelligent Extraction of an Internal Signal in a Wiener System Consisting of a Linear Block Followed by Hard-Nonlinearity”, Informatica vol. 24, no 1, 2013, pp. 35–58.10.15388/Informatica.2013.383Search in Google Scholar

[19] J. Kou, W. Zhang, and M. Yin, “Novel Wiener Models with a Time-Delayed Nonlinear Block their Identification”, Nonlinear Dynamics vol. 85, no 4, 2016, 2389–2404.10.1007/s11071-016-2833-ySearch in Google Scholar

[20] L. Li and X. Ren, “Decomposition-based recursive least-squares parameter estimation algorithm for Wiener-Hammerstein systems with dead-zone nonlinearity”, International Journal of Systems Science 48, no 11, 2017, pp. 2405–2414.10.1080/00207721.2017.1320455Search in Google Scholar

[21] R. Liu, T. Pan, S. Chen, and Z. Li, “Identification of Non-Uniformly Sampled Wiener Systems with Dead-Zone Non-Linearities”, Mathematical Computer Modelling of Dynamical Systems vol. 23, no 6, 2017, pp. 595–612.10.1080/13873954.2016.1278392Search in Google Scholar

[22] M. Pawlak, Z. Hasiewicz, and P. Wachel, “On Nonparametric Identification of Wiener systems”, IEEE Trans, Signal Processing vol. 55, 2007, pp. 482–492.10.1109/TSP.2006.885684Search in Google Scholar

[23] P. S. Pal, R. Kar, D. Mandal, and S. P. Ghoshal, “Parametric Identification with Performance Assessment of Wiener Systems Using Brain Storm Optimization Algorithm”, Circuits Systems, Signal Processing vol. 36, no. 8, 2017, pp. 3143–3181.10.1007/s00034-016-0464-7Search in Google Scholar

[24] A. Radouane, F. Giri, F. Ikhouane, T. Ahmed-ali, F. Z. Chaoui, and A. Brouri, “System Identification of a Class of Wiener Systems with Hysteretic Nonlinearities”, Int. Journal of Adaptive Control Signal Processing vol. 31, no 3, 2017, pp. 332–359.10.1002/acs.2700Search in Google Scholar

[25] J. Vörös, “Parameter Identification of Wiener Systems with Multisegment Piecewise-Linear Nonlinearities”, Systems Control Letters vol. 56, no 2, 2007, pp. 99–105.10.1016/j.sysconle.2006.08.001Search in Google Scholar

[26] P. Wachel and G. Mzyk, “Direct Identification of the Linear Block in Wiener System”, Int. Journal of Adaptive Control Signal Processing vol. 30, no 1, 2016, pp. 93–105.10.1002/acs.2584Search in Google Scholar

[27] E. W. Bai, “A Blind Approach to the Hammerstein-Wiener Model Identification”, Automatica vol. 38, 2002, pp. 967–979.10.1016/S0005-1098(01)00292-8Search in Google Scholar

[28] B. Ni, M. Gilson, and H. Garnier, “Refined Instrumental Variable Method for HammersteinWiener Continuous-Time Model Identification”, IET Control Theory Applications vol. 7, no 9, 2013, pp. 1276–1286.10.1049/iet-cta.2012.0548Search in Google Scholar

[29] J. Vörös, “An Iterative Method for Hammerstein-Wiener Systems Parameter Identification”, Journal of Electrical Engineering vol. 55, no 11-12, 2004, pp. 328–331.Search in Google Scholar

[30] Y. Wang and F. Ding, “A Filtering Based Multi-Innovation Gradient Estimation Algorithm Performance Analysis for Nonlinear Dynamical Systems”, IMA Journal of Applied Mathematics vol. 82, no 6, 2017, pp. 1171–1191.10.1093/imamat/hxx029Search in Google Scholar

[31] A. Wills and B. Ninness, “Generalised HammersteinWiener System Estimation a Benchmark Application”, Control Engineering Practice vol. 20, no 11, 2012, pp. 1097–1108.10.1016/j.conengprac.2012.03.011Search in Google Scholar

[32] F. Yu, Z. Mao, P. Yuan, D. He, and M. Jia, “Recursive Parameter Estimation for Hammerstein-Wiener Systems using Modified EKF Algorithm”, ISA Transactions vol. 70 2017, pp. 104–115.10.1016/j.isatra.2017.05.01228610796Search in Google Scholar

[33] B. Zhang, H. Hong, and Z. Mao, “Adaptive Control of HammersteinWiener Nonlinear Systems”, International Journal of Systems Science vol. 47, no 9, 2016, pp. 2032–2047.10.1080/00207721.2014.971089Search in Google Scholar

[34] V. Kalaš, L. Jurišica, M. Žalman, S. Almássy, P. Sivicek, A. Varga, and D. Kalaš, “Nonlinear Numerical Servosystems”, Bratislava Alfa/SNTL (in Slovak), 1985.Search in Google Scholar

[35] V. Cerone and D. Regruto, “Bounding the Parameters of Linear Systems with Input Backlash”, IEEE Trans. Automatic Control vol. 52, no 3, 2007, pp. 531–536.10.1109/TAC.2007.892375Search in Google Scholar

[36] R. L. Dong and Y. H. Tan, “On-line Identification Algorithm Convergence Analysis for Sandwich Systems with Backlash”, International Journal of Control Automation Systems vol. 9, no 3, 2011, pp. 588–594.10.1007/s12555-011-0320-2Search in Google Scholar

[37] F. Giri, Y. Rochdi, F. Z. Chaoui, and A. Brouri, “Identification of Hammerstein Systems in Presence of Hysteresis-Backlash Hysteresis-Relay Nonlinearities”, Automatica vol. 44, no 3, 2008, pp. 767–775.10.1016/j.automatica.2007.07.005Search in Google Scholar

[38] X. Huang and J. Wang, “Identification of Ground Vehicle Steering System Backlash”, Journal of Dynamic Systems Measurement, Control – Transactions of the ASME vol. 135, no 1, 2013, art, no, 011014,.10.1115/1.4007558Search in Google Scholar

[39] G. Lai, C. Wen, Z. Liu, Y. Zhang, C. L. P. Chen, and S. Xie, “Adaptive Inverse Compensation for Actuator Backlash with Piecewise Time-Varying Parameters”, International Journal of Control vol. 91, no 2, 2018, pp. 337–345.10.1080/00207179.2017.1279754Search in Google Scholar

[40] L. Li, X. Ren, and F. Guo, “Modified Multi-Innovation Stochastic Gradient Algorithm for Wiener-Hammerstein Systems with Backlash”, Journal of the Franklin Institute vol. 355, no 9, 2018, pp. 4050–4075.10.1016/j.jfranklin.2018.03.015Search in Google Scholar

[41] Z. Shi, Y. Wang, and Z. Ji, “A Multi-Innovation Recursive Least Squares Algorithm with a Forgetting Factor for Hammerstein CAR Systems with Backlash”, Circuits Systems, Signal Processing vol. 35, no 12, 2016, pp. 4271–4289.10.1007/s00034-016-0271-1Search in Google Scholar

[42] J. Vörös, “Modeling Identification of Systems with Backlash”, Automatica vol. 46, no 2, 2010, pp. 369–374.10.1016/j.automatica.2009.11.005Search in Google Scholar

[43] Z. Zhou, Y. Tan, Y. Xie, and R. Dong, “State Estimation of a Compound Non-Smooth Sandwich System with Backlash Dead Zone”, Mechanical Systems Signal Processing vol. 83, no 2017, pp. 439–449.10.1016/j.ymssp.2016.06.023Search in Google Scholar

[44] J. Vörös, “Identification of Nonlinear Dynamic Systems with Input Saturation Output Backlash using Three-Block Cascade Models”, Journal of the Franklin Institute vol. 351, no 12, 2014, pp. 5455–5466.10.1016/j.jfranklin.2014.09.025Search in Google Scholar

[45] J. Vörös, “Modelling Identification of Nonlinear Cascade Systems with Backlash Input Static Output Nonlinearities”, Mathematical Computer Modelling of Dynamical Systems vol. 24, no 6, 2014, pp. 573–589.10.1080/13873954.2018.1521840Search in Google Scholar

[46] L. Ljung and T. Söderström, “Theory and Practice of Recursive Identification”, Massachusetts MIT Press, 1983.Search in Google Scholar

[47] M. Chidambaram, “Computer Control of Processes”, New York CRC Press, 2001.Search in Google Scholar

[48] F. Giri, A. Radouane, A. Brouri, and F. Z. Chaoui, “Combined Frequency-Prediction Error Identification Approach for Wiener Systems with Backlash Backlash-Inverse Operators”, Automatica vol. 50, 2014, pp. 768–783.10.1016/j.automatica.2013.12.030Search in Google Scholar

[49] J. Reyland and E. W. Bai, “Generalized Wiener System Identifi-cation: General Backlash Nonlinearity Finite Impulse Response Linear Part”, Int. Journal of Adaptive Control Signal Processing vol. 28, 2014, pp. 1174–1188.10.1002/acs.2437Search in Google Scholar

[50] J. Vörös, “Parametric Identification of Systems with General Backlash”, Informatica vol. 23, no 2, 2012, pp. 283–298.10.15388/Informatica.2012.360Search in Google Scholar

[51] J. Vörös, “Modeling Identification of Nonlinear Cascade Sandwich Systems with General Backlash”, Journal of Electrical Engineering vol. 65, no 2, 2014, pp. 104–110.10.2478/jee-2014-0015Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other