Open Access

Investigation Of Helium Implanted Fe–Cr Alloys By Means Of X–Ray Diffraction And Positron Annihilation Spectroscopy


Cite

[1] FARRELL, A. : Experimental effects of helium on cavity formation during irradiationa review, Radiation Effects 53 No. 3-4 (1980), 175–194.10.1080/00337578008207114Search in Google Scholar

[2] POROLLO, S. I.—DVORIASHIN, A. M.—VOROBYEV, A. N.—KONOBEEV, YU. V. : The microstructure and tensile properties of FeCr alloys after neutron irradiation at 400C to 5.57.1 dpa, Journal of Nuclear Materials 256 No. 2-3 (1998), 247–253.10.1016/S0022-3115(98)00043-9Search in Google Scholar

[3] KONOBEEV, YU. V.—DVORIASHIN, A. M.—POROLLO, S. I.—GARNER, F. A. : Swelling and microstructure of pure Fe and FeCr alloys after neutron irradiation to 26 dpa at 400 C, Journal of Nuclear Materials 355 No. 1-3 (2006), 124–130.10.1016/j.jnucmat.2006.04.011Search in Google Scholar

[4] BALLO, P.—SLUGEŇ, V. : Atomic simulation of grain-boundary sliding and migration in copper, Physical Review B 65 No. 1 (2001), 012106–012106.Search in Google Scholar

[5] SLUGEŇ, V.—KURIPLACH, J.—BALLO, P.—DOMONKO, P. : Hydrogen implantation effect in copper alloys selected for ITER investigated by positron annihilation spectroscopy, Nuclear Fusion 44 No. 1 (2003), 93–97.Search in Google Scholar

[6] BALLO, P.—SLUGEŇ, V. : Grain boundary sliding and migration in copper: the effect of vacancies, Computational Materials Science 33 No. 4 (2005), 491–498.10.1016/j.commatsci.2004.09.049Search in Google Scholar

[7] BALLO, P.—DEGMOVÁ, J.—SLUGEŇ, V. : Grain boundary sliding and migration in copper: Vacancy effect, Physical Review B 72 No. 6 (2005), 064118–064118.10.1103/PhysRevB.72.064118Search in Google Scholar

[8] KRŠJAK, V.—SLUGEŇ, V.—PETRISKA, M.—SOJAK, S. — EGGER, W. : Microstructural study of He-implanted Fe-Cr alloys with the use of conventional lifetime technique and pulsed low energy positron beam, Physica Status Solidi C 6 No. 11 (2009), 2339–2341, Special Issue: 15th International Conference on Positron Annihilation (ICPA-15).Search in Google Scholar

[9] ZIEGLER, J. F.—ZIEGLER, M. D.—BIERSACK, J. P. : SRIM The stopping and range of ions in matter (2010), Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268 No. 11-12 (2010), 1818–1823, 19th International Conference on Ion Beam Analysis.Search in Google Scholar

[10] KOVÁČ, P.—PAVLOVIČ, M.—DOBROVODSKÝ, J. : A 0.9 MV Accelerator for Materials Research at the STU Bratislava, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 85 No. 1-4 (1994), 749–751.10.1016/0168-583X(94)95916-1Search in Google Scholar

[11] SLUGEŇ, V.—KRŠJAK, V.—EGGER, W.—PETRISKA, M. ; SOJAK, S.; VETERNÍKOVÁ, J. : FeCr alloys behavior after helium implantation, Journal of Nuclear Materials 409 No. 2 (2011), 163–166, Proceedings of the IAEA-EC Topical Meeting on Development of New Structural Materials for Advanced Fission and Fusion Reactor Materials (TR-37435).Search in Google Scholar

[12] KRŠJAK, V.—SOJAK, S.—SLUGEŇ, V.—PETRISKA, M. : Ion implantation induced defects in Fe-Cr alloys studied by conventional positron annihilation lifetime spectroscopy, Journal of Physics: Conference Series 265 No. 1 (2014), 012014–012014.Search in Google Scholar

[13] BIRKHOLZ, M. : Thin Film Analysis by X-ray Scattering, Willey-VCH, Weinheim, 2006, pp. 143–290.10.1002/3527607595Search in Google Scholar

[14] NOVÁK, P.—DOBROČKA, E.—BÚC, D.—KOVÁČ, J. : Determination of residual stress in thin film by GIXRD, APCOM conference proceedings 1 No. 1 (2014), 300–303.Search in Google Scholar

[15] GOKHMAN, A.—PECKO, S.—SLUGEŇ, V. : Cluster dynamics study of damage accumulation in helium-implanted Fe2.5at%Cr alloy, Radiation Effects and Defects in Solids 170 No. 2 (2015), 130–137.10.1080/10420150.2014.1001393Search in Google Scholar

[16] WAS, S. G. : Fundamentals of Radiation Materials Science, Springer, Verlag, Germany, 2007, pp. 545–576.Search in Google Scholar

[17] LITTLE, E. A.—STOW, D. A. : Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor, Journal of Nuclear Materials 87 No. 1 (1979), 25–39.10.1016/0022-3115(79)90123-5Search in Google Scholar

[18] GELLES, D. S. : Microstructural examination of neutron-irradiated simple ferritic alloys, Journal of Nuclear Materials 108-9 No. 1 (1982), 515–526.10.1016/0022-3115(82)90523-2Search in Google Scholar

[19] GARNER, F. A.—TOLOCZKO, M. B.—SENCER, B. H. : Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure, Journal of Nuclear Materials 276 No. 1-3 (2000), 123–142.10.1016/S0022-3115(99)00225-1Search in Google Scholar

[20] MARQUES, M. J.—PINA, J.—DIAS, A. M.—LEBRUN, J. L.—FEUGEAS, J. : X-ray diffraction characterization of ion-implanted austenitic stainless steel, Surface and Coatings Technology 95 No. 1 (2015), 8–16.Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other