Open Access

Considering on Lightning Electric Fields in Presence of Ground Reflection at Non-Perfect Ground


Cite

[1] PAOLONE, M.—NUCCI, C.—RACHIDI, F.: A new finite difference time domain scheme for the evaluation of lightning induced overvoltage on multiconductor overhead lines.Search in Google Scholar

[2] PAOLONE, M.—NUCCI, C.—PETRACHE, E.—RACHIDI, F.: Mitigation of lightning-induced overvoltages in medium voltage distribution lines by means of periodical grounding of shielding wires and of surge arresters: Modeling and experimen-tal validation, IEEE Transactions on Power Delivery 19 (2004), 423–431.10.1109/TPWRD.2003.820196Search in Google Scholar

[3] NUCCI, C. A.—RACHIDI, F.—IANOZ, M.—MAZZETTI, C.: Lightning-induced voltages on overhead lines, IEEE Transactions on Electromagnetic Compatibility 35 (1993), 75—86.10.1109/15.249398Search in Google Scholar

[4] NUCCI, C. A.: Lightning-induced voltages on overhead power lines, Part I: Return stroke current models with specified chan-nel-base current for the evaluation of the return stroke electromagnetic fields, Electra 161 (1995), 75102.Search in Google Scholar

[5] IZADI, M.—KADIR, M.: New Algorithm for Evaluation of Electric Fields due to Indirect Lightning Strike, CMES: Computer Modeling in Engineering & Sciences 67 (2010), 1—12.Search in Google Scholar

[6] IZADI, M.—ABKADIR, M. Z.—GOMES, C—WANAHMAD, W.: An Analytical Second—FDTD Method For Evaluation of Electric and Magnetic Fields at Intermediate Distances From Lightning Channel, Progress In Electromagnetic Research (PIER); 110 (2010), 329—352.10.2528/PIER10080801Search in Google Scholar

[7] IZADI, M.—ABKADIR, M. Z.—GOMES, C.—WANAHMAD, W.: Evaluation of electromagnetic fields due to lightning channel with respect to the striking angle, International Review of Electrical Engineering (IREE) 6 (2011), 1013—1023.Search in Google Scholar

[8] IZADI, M.—ABKADIR, M. Z.—ABIDIN, M. Z.—GOMES, C.: Evaluation of Electromagnetic Fields Associated with Inclined Lightning Channel Using Second Order FDTD-Hybrid Methods, Progress In Electromagnetics Research 117 (2011), 209—236.10.2528/PIER11042103Search in Google Scholar

[9] IZADI, M.—KADIR, M. Z. A. A.—GOMES, C.—AHMAD, W. F. W.: Numerical expressions in time domain for electromagnetic fields due to lightning channels’, International Journal of Applied Electromagnetics and Mechanics 37 (2011), 275—289.10.3233/JAE-2011-1400Search in Google Scholar

[10] THOTTAPPILLIL, R.—RAKOV, V.: Review of three equivalent approaches for computing electromagnetic fields from an extending lightning discharge, Journal of Lightning Research 1 (2007), 90—110.Search in Google Scholar

[11] THOTTAPPILLIL, R—RAKOV, V.—UMAN, M.: Distribution of charge along the lightning channel: Relation to remote electric and magnetic fields and to return-stroke models, Journal of Geophysical Research 102 (1997), 6987—7006.10.1029/96JD03344Search in Google Scholar

[12] UMAN, M. A.—MCLAIN, D. K.: Magnetic field of lightning return stroke, Journal of Geophysical Research 74 (1969), 6899—6910.10.1029/JC074i028p06899Search in Google Scholar

[13] MOINI, R.—SADEGHI, S.—KORDI, B.—RACHIDI, F.: An antenna—theory approach for modeling inclined lightning return stroke channels, Electric power systems research 76 (2006), 945—952.10.1016/j.epsr.2005.10.016Search in Google Scholar

[14] MOINI, R.—RAKOV, V.—UMAN, M.—KORDI, B.: An antenna theory model for the lightning return stroke, Time (1997), 149—152.Search in Google Scholar

[15] IZADI, M.—KADIR, Z. A. A. M—GOMES, C.: On the consideration of the channel angle effects on the electromagnetic fields associated with inclined lightning channel, in Power Engineering and Optimization Conference (PEOCO) 2012 IEEE International (2012), 153—158.10.1109/PEOCO.2012.6230852Search in Google Scholar

[16] IZADI, M.—ABKADIR, M. Z.—GOMES, C.—AHMAD, W. F. H. W.: Analytical Expressions for Electromagnetic Fields Associated with the Inclined Lightning Channels in the Time Domain, Electric Power Components and Systems 40 (2012), 414—438.10.1080/15325008.2011.639130Search in Google Scholar

[17] V. COORAY: The lightning flash: IET Press.Search in Google Scholar

[18] RUBINSTEIN, M.: An approximate formula for the calculation of the horizontal electric field from lightning at close, intermediate, and longrange, IEEE Transactions on Electromagnetic Compatibility 38 (1996), 531–535.10.1109/15.536087Search in Google Scholar

[19] IZADI, M.—KADIR, M.—AHMAD, W.—NAWI, Z.—ASKARI, M.: On comparison between Cooray-Rubinstein and FDTD methods for ground conductivity effect on horizontal electric field evaluation in time domain, Research and Development (SCOReD) 2009 IEEE Student Conference, 336–340.10.1109/SCORED.2009.5443007Search in Google Scholar

[20] IZADI, M.—KADIR, M. Z. A—GOMES, C—ASKARI, M. T.: Evaluation of lightning return stroke parameters using measured magnetic flux density and pso algorithm, PRZEGLD ELEKTROTECHNICZNY (Electrical Review) R. 88 NR 10a (2012).Search in Google Scholar

[21] IZADI, M.—ABKADIR, M. Z. A.—GOMES, C.—COORAY, V.—SHOENE, J.: Evaluation of lightning current and velocity profiles along lightning channel using measured magnetic flux density, Progress In Electromagnetics Research (PIER) 130 (2012), 473–492.10.2528/PIER12060612Search in Google Scholar

[22] IZADI, M.—ABKADIR, M. Z. A.—GOMES, C.—COORAY, V.: Evaluation of lightning return stroke current using measured electromagnetic fields, Progress In Electromagnetics Research (PIER); 130 (2012), 581–600.10.2528/PIER12060712Search in Google Scholar

[23] HEIDLER, F.: Analytische Blitzstromfunktion zur LEMP-Berechnung, presented at the 18th ICLP Munich, Germany (1985).Search in Google Scholar

[24] ANDREOTTI, A.—DELFINO, F.—GIRDINIO, P.—VEROLIN L.: An identification procedure for lightning return strokes, Journal of Electrostatics 51 (2001), 326–332.10.1016/S0304-3886(01)00097-3Search in Google Scholar

[25] ANDREOTTI, A.—DELFINO, F.—GIRDINIO, P.—VEROLIN L.: A field-based inverse algorithm for the identification of different height lightning return strokes, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering(COMPEL) 20 (2001), 724–731.10.1108/03321640110393716Search in Google Scholar

[26] IZADI, M.—KADIR, M.: Considering on charge density along return stroke lightning channel, in Power and Energy (PECon) 2010 IEEE International Conference (2010), 384–389.10.1109/PECON.2010.5697614Search in Google Scholar

[27] RAKOV, V.: Lightning electromagnetic fields: Modeling and measurements, in 12th Int. Zurich Symposium on Electromagnetic Compatibility Zurich, Switzerland (1997), 59–64.Search in Google Scholar

[28] BERMUDEZ, J. L.: Lightning currents and electromagnetic fields associated with return strokes to evaluated strike objects, Phd Ecole Polytechnique Federale De Lausanne (2003).Search in Google Scholar

[29] RAKOV, V.: lightning return stroke speed, Journal of lightning Research 1 (2007).Search in Google Scholar

[30] KREYSZIG, E.: Advanced engineering mathematics, Wiley-India (2007).Search in Google Scholar

[31] SADIKU, M.: Numerical technique in electromagnetics, CRC Press LLC (2001).10.1201/9781420058277Search in Google Scholar

[32] NUCCI, C. A.: Lightning-induced voltages on overhead power lines. Part II: Coupling models for the evaluation of the induced voltages, Electra 162 (1995), 121145.Search in Google Scholar

[33] M. IZADI—M. Z. A. ABKADIR—F. A. A. RAHMAN: On Comparison between Rusck and Taylor Coupling Models for Evaluation of Lightning Induced Voltage on the Power Lines, Asia Pacific Symposium of Applied Electromagnetics and Mechanics (APSAEM2010) (2010).Search in Google Scholar

[34] ANDREOTTI—MOTTOLA—PAGANO—VEROLINO: An Exact Closed From Solution for Lightning Induced Over voltage Calculation, IEEE Transactions on Power Delivery 24 (2009).10.1109/TPWRD.2008.2005395Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other