Open Access

Vulnerable Plaques Producing an Acute Coronary Syndrome Exhibit a Different CT Phenotype than Those That Remain Silent


Cite

1. Boden WE, Shah PK, Gupta V, Ohman EM. Contemporary approach to the diagnosis and management of non-ST-segment elevation acute coronary syndromes. Prog Cardiovasc Dis. 2008;50:311-351. doi: 10.1016/j.pcad.2007.11.003.10.1016/j.pcad.2007.11.00318313479Search in Google Scholar

2. Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25-e146. doi: 10.1161/CIRCULATIONAHA.107.187998.10.1161/CIRCULATIONAHA.107.18799818086926Search in Google Scholar

3. Menzin J, Wygant G, Hauch O, Jackel J, Friedman M. One-year costs of ischemic heart disease among patients with acute coronary syndromes: findings from a multi-employer claims database. Curr Med Res Opin. 2008;24:461-468. doi: 10.1185/030079908x261096.10.1185/030079908X261096Search in Google Scholar

4. Taylor MJ, Scuffham PA, McCollam PL, Newby DE. Acute coronary syndromes in Europe: 1-year costs and outcomes. Curr Med Res Opin. 2007;23:495-503. doi: 10.1185/030079906X167462.10.1185/030079906X16746217355731Search in Google Scholar

5. Choi SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343. doi: 10.1007/s11886-010-0113-x.10.1007/s11886-010-0113-x20425160Search in Google Scholar

6. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275. doi: 10.1161/01.ATV.20.5.1262.10.1161/01.ATV.20.5.126210807742Search in Google Scholar

7. Kajander OA, Pinilla-Echeverri N, Jolly SS, et al. Culprit plaque morphology in STEMI – an optical coherence tomography study: insights from the TOTAL-OCT substudy. EuroIntervention. 2016;12:716-723. doi: 10.4244/EIJV12I6A116.10.4244/EIJV12I6A11627542783Search in Google Scholar

8. Yamashita A, Asada Y. Pathology of Coronary Atherosclerotic Plaques and Mechanisms of Plaque Disruption. Ann Nucl Cardiol. 2017;3:66-72. doi: 10.17996/anc.17-00011.10.17996/anc.17-00011Search in Google Scholar

9. Jia H, Abtahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62:1748-1758. doi: 10.1016/j. jacc.2013.05.071.Search in Google Scholar

10. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733-743. doi: 10.1161/01.cir.79.4.733.10.1161/01.CIR.79.4.733Search in Google Scholar

11. Stefanadis C, Antoniou CK, Tsiachris D, Petri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6:e005543. doi: 10.1161/JAHA.117.005543.10.1161/JAHA.117.005543552404428314799Search in Google Scholar

12. Cheng JM, Garcia-Garcia HM, de Boer SP, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J. 2014;35:639-647. doi: 10.1093/eurheartj/eht484.10.1093/eurheartj/eht48424255128Search in Google Scholar

13. Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V. OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging. 2015;8:198-209. doi: 10.1016/j.jcmg.2014.12.005.10.1016/j.jcmg.2014.12.00525677892Search in Google Scholar

14. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407-477. doi: 10.1093/eurheartj/ehz425.10.1093/eurheartj/ehz42531504439Search in Google Scholar

15. Rodriguez-Granillo GA, Carrascosa P, Bruining N, Waksman R, Garcia-Garcia HM. Defining the non-vulnerable and vulnerable patients with computed tomography coronary angiography: evaluation of atherosclerotic plaque burden and composition. Eur Heart J Cardiovasc Imaging. 2016;17:481-491. doi: 10.1093/ehjci/jew012.10.1093/ehjci/jew01226903599Search in Google Scholar

16. Kolossváry M, Szilveszter B, Merkely B, Maurovich-Horvat P. Plaque imaging with CT-a comprehensive review on coronary CT angiography-based risk assessment. Cardiovasc Diagn Ther. 2017;7:489-506. doi: 10.21037/cdt.2016.11.06.10.21037/cdt.2016.11.06571694529255692Search in Google Scholar

17. Conte E, Annoni A, Pontone G, et al. Evaluation of coronary plaque characteristics with coronary computed tomography angiography in patients with non-obstructive coronary artery disease: a long-term follow-up study. Eur Heart J Cardiovasc Imaging. 2017;18:1170-1178. doi: 10.1093/ehjci/jew200.10.1093/ehjci/jew20027679600Search in Google Scholar

18. Otsuka K, Fukuda S, Tanaka A, et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging. 2013;6:448-457. doi: 10.1016/j.jcmg.2012.09.016.10.1016/j.jcmg.2012.09.01623498679Search in Google Scholar

19. Kröner ES, van Velzen JE, Boogers MJ, et al. Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol. 2011;107:1725-1729. doi: 10.1016/j. amjcard.2011.02.337.10.1016/j.amjcard.2011.02.337Search in Google Scholar

20. Benedek T, Jako B, Benedek I. Plaque quantification by coronary CT and intravascular ultrasound identifies a low CT density core as a marker of plaque instability in acute coronary syndromes. Int Heart J. 2014;55:22-28. doi: 10.1536/ihj.13-213.10.1536/ihj.13-21324463925Search in Google Scholar

21. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2016;17:120-129. doi: 10.1093/ehjci/jev325.10.1093/ehjci/jev325488289626690951Search in Google Scholar

22. Nerlekar N, Ha FJ, Cheshire C, et al. Computed Tomographic Coronary Angiography-Derived Plaque Characteristics Predict Major Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Circ Cardiovasc Imaging. 2018;11:e006973. doi: 10.1161/CIRCIMAGING.117.006973.10.1161/CIRCIMAGING.117.00697329305348Search in Google Scholar

23. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65:846-855. doi: 10.1016/j. jacc.2014.11.041.10.1016/j.jacc.2014.11.041Search in Google Scholar

24. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57. doi: 10.1016/j.jacc.2009.02.068.10.1016/j.jacc.2009.02.06819555840Search in Google Scholar

25. Mitra N, Hodas R, Szabo E, Parajko Z, Benedek T, Benedek I. Impact of Coronary Plaque Vulnerability on Acute Cardiovascular Events – Design of a CT-based 2-year Follow-up Study. Journal of Interdisciplinary Medicine. 2019;4:64-71. doi: 10.2478/jim-2019-0015.10.2478/jim-2019-0015Search in Google Scholar

26. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation. 2000;101:598-603. doi: 10.1161/01.cir.101.6.598.10.1161/01.CIR.101.6.598Search in Google Scholar

27. Hong YJ, Jeong MH, Choi YH, et al. Positive remodeling is associated with more plaque vulnerability and higher frequency of plaque prolapse accompanied with post-procedural cardiac enzyme elevation compared with intermediate/negative remodeling in patients with acute myocardial infarction. J Cardiol. 2009;53:278-287. doi: 10.1016/j.jjcc.2008.12.006.10.1016/j.jjcc.2008.12.00619304134Search in Google Scholar

28. Obaid DR, Calvert PA, Brown A, et al. Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: Correlation with intra-vascular ultrasound. J Cardiovasc Comput Tomogr. 2017;11:455-461. doi: 10.1016/j. jcct.2017.09.001.10.1016/j.jcct.2017.09.001Search in Google Scholar

29. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319-326. doi: 10.1016/j.jacc.2007.03.044.10.1016/j.jacc.2007.03.04417659199Search in Google Scholar

30. van der Giessen AG, Toepker MH, Donelly PM, et al. Reproducibility, accuracy, and predictors of accuracy for the detection of coronary atherosclerotic plaque composition by computed tomography: an ex vivo comparison to intravascular ultrasound. Invest Radiol. 2010;45:693-701. doi: 10.1097/RLI.0b013e3181e0a541.10.1097/RLI.0b013e3181e0a54120479650Search in Google Scholar

31. Choi BJ, Kang DK, Tahk SJ, et al. Comparison of 64-slice multidetector computed tomography with spectral analysis of intravascular ultrasound backscatter signals for characterizations of noncalcified coronary arterial plaques. Am J Cardiol. 2008;102:988-993. doi: 10.1016/j. amjcard.2008.05.060.10.1016/j.amjcard.2008.05.060Search in Google Scholar

32. Wang R, Liu X, Wang C, Ye X, Xu X, Yang C. Higher coronary artery calcification score is associated with adverse prognosis in patients with stable angina pectoris. J Thorac Dis. 2017;9:582-589. doi: 10.21037/jtd.2017.02.84.10.21037/jtd.2017.02.84539405228449466Search in Google Scholar

33. Qazi AH, Zallaghi F, Torres-Acosta N, Thompson RC, O’Keefe JH. Computed Tomography for Coronary Artery Calcification Scoring: Mammogram for the Heart. Prog Cardiovasc Dis. 2016;58:529-536. doi: 10.1016/j.pcad.2016.01.007.10.1016/j.pcad.2016.01.00726892393Search in Google Scholar

34. Nance JW Jr, Schlett CL, Schoepf UJ, et al. Incremental prognostic value of different components of coronary atherosclerotic plaque at cardiac CT angiography beyond coronary calcification in patients with acute chest pain. Radiology. 2012;264:679-690. doi: 10.1148/radiol.12112350.10.1148/radiol.1211235022820732Search in Google Scholar

35. Min JK, Dunning A, Lin FY, et al. Rationale and design of the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) Registry. J Cardiovasc Comput Tomogr. 2011;5:84-92. doi: 10.1016/j. jcct.2011.01.007.10.1016/j.jcct.2011.01.007Search in Google Scholar

36. Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R. Coronary Artery Calcification and its Progression: What Does it Really Mean? JACC Cardiovasc Imaging. 2018;11:127-142. doi: 10.1016/j.jcmg.2017.10.012.10.1016/j.jcmg.2017.10.01229301708Search in Google Scholar

37. Vergallo R, Uemura S, Soeda T, et al. Prevalence and predictors of multiple coronary plaque ruptures: In vivo 3-vessel optical coherence tomography imaging study. Arterioscler Thromb Vasc Biol. 2016;36:2229-2238. doi: 10.1161/ATVBAHA.116.307891.10.1161/ATVBAHA.116.30789127634834Search in Google Scholar

38. Williams MC, Kwiecinski J, Doris M, et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation. 2020;141:1452-1462. doi: 10.1161/CIRCULATIONAHA.119.044720.10.1161/CIRCULATIONAHA.119.044720719585732174130Search in Google Scholar

39. Hadamitzky M, Jähnichen C, Meyer T, et al. Has Low Attenuation Plaque Volume in Coronary Computed Tomographic Angiography an Incremental Value For Prediction of Cardiac Events? Circulation. 2010;122:A12911. doi: 10.1161/circ.122.suppl_21.A12911.Search in Google Scholar

40. Achenbach S, Ropers D, Hoffmann U, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43:842-847. doi: 10.1016/j.jacc.2003.09.053.10.1016/j.jacc.2003.09.05314998627Search in Google Scholar

41. Hoffmann U, Ferencik M, Udelson JE, et al. Prognostic Value of Noninvasive Cardiovascular Testing in Patients With Stable Chest Pain: Insights From the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation. 2017;135:2320-2332. doi: 10.1161/CIRCULATIONAHA.116.024360.10.1161/CIRCULATIONAHA.116.024360594605728389572Search in Google Scholar

42. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503-1516. doi: 10.1056/NEJMoa070829.10.1056/NEJMoa07082917387127Search in Google Scholar

43. Chang HJ, Lin FY, Lee SE, et al. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. J Am Coll Cardiol. 2018;71:2511-2522. doi: 10.1016/j.jacc.2018.02.079.10.1016/j.jacc.2018.02.079602002829852975Search in Google Scholar

44. Feuchtner G, Kerber J, Burghard P, et al. The high-risk criteria low-attenuation plaque <60 HU and the napkin-ring sign are the most powerful predictors of MACE: a long-term follow-up study. Eur Heart J Cardiovasc Imaging. 2017;18:772-779. doi: 10.1093/ehjci/jew167.10.1093/ehjci/jew16727502292Search in Google Scholar

45. Luo W, Zhao R, Song Y, et al. Combined non-invasive scan and biomarkers to identify independent risk factors in patients with mild coronary stenosis. J Thorac Dis. 2020;12:199-208. doi: 10.21037/jtd.2020.01.71.10.21037/jtd.2020.01.71713907832274085Search in Google Scholar

46. Subirana I, Fitó M, Diaz O, et al. Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism. Sci Rep. 2018;8:3191. doi: 10.1038/s41598-018-21482-y.10.1038/s41598-018-21482-y581660329453342Search in Google Scholar

47. Kwiecinski J, Dey D, Cadet S, et al. Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2020;21:58-66. doi: 10.1093/ehjci/jez152.10.1093/ehjci/jez152820464831211387Search in Google Scholar

48. Dhawan SS, Avati Nanjundappa RP, Branch JR, et al. Shear stress and plaque development. Expert Rev Cardiovasc Ther. 2010;8:545-556. doi: 10.1586/erc.10.28.10.1586/erc.10.28546730920397828Search in Google Scholar

49. Parajkó Z, Mester A, Kovács I, et al. Noninvasive Functional Characterization of Coronary Plaques by Coronary Computed Tomography – Beyond the Morphology of Vulnerable Plaques. Journal of Interdisciplinary Medicine. 2019;4:132-135. doi: 10.2478/jim-2019-0022.10.2478/jim-2019-0022Search in Google Scholar

eISSN:
2457-5518
Language:
English