Open Access

Beneficial Influence of Agomelatine Treatment on Behavioral Impairments in AΒ-Induced Rat Model of Alzheimer’s Disease


Cite

1. Caraci F, Copani A, Nicoletti F, Drago F. Depression and Alzheimer’s disease: Neurobiological links and common pharmacological targets. Eur J Pharmacol [Internet]. 2010;626(1):64–71.10.1016/j.ejphar.2009.10.02219837057Search in Google Scholar

2. Vincent B. Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: A critical review. Pharmacol Res [Internet]. 2018;134(July):223–37.10.1016/j.phrs.2018.06.01129981776Search in Google Scholar

3. Guardiola-Lemaitre B, De Bodinat C, Delagrange P, Millan MJ, Munoz C, Mocaër E. Agomelatine: Mechanism of action and pharmacological profile in relation to antidepressant properties. Br J Pharmacol. 2014;171(15):3604–19.10.1111/bph.12720412806024724693Search in Google Scholar

4. 4. Tchekalarova J, Stoynova T, Ilieva K, Mitreva R, Atanasova M. Agomelatine treatment corrects symptoms of depression and anxiety by restoring the disrupted melatonin circadian rhythms of rats exposed to chronic constant light. Pharmacol Biochem Behav. 2018;171:1-9.10.1016/j.pbb.2018.05.01629807067Search in Google Scholar

5. Ilieva K, Tchekalarova J, Atanasova D, Kortenska L, Atanasova M. Antidepressant agomelatine attenuates behavioral deficits and concomitant pathology observed in streptozotocin-induced model of Alzheimer’s disease in male rats. Horm Behav. 2019;107:11-9.10.1016/j.yhbeh.2018.11.00730452900Search in Google Scholar

6. Balmus IM, Ciobica A, Antioch I, Dobrin R, Timofte D. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. Oxid Med Cell Longev. 2016;2016:(DD) 3975101.10.1155/2016/3975101498366927563374Search in Google Scholar

7. Padurariu M, Antioch I, Balmus I, Ciobica A, El-Lethey HS, Kamel MM. Describing some behavioural animal models of anxiety and their mechanistics with special reference to oxidative stress and oxytocin relevance. Int J Vet Sci Med [Internet]. 2017;5(2):98–104.10.1016/j.ijvsm.2017.08.003613785630255057Search in Google Scholar

8. Bild W, Ciobica A. Angiotensin-(1–7) central administration induces anxiolytic-like effects in elevated plus maze and decreased oxidative stress in the amygdala. J Affect Disord [Internet]. 2013;145(2):165–71.10.1016/j.jad.2012.07.02422868060Search in Google Scholar

9. Bailey KR CJ. Anxiety-Related Behaviors in Mice. In: Buccafusco JJ, editor. Methods of Behavior Analysis in Neuroscience. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis.; 2009. p. Chapter 5.Search in Google Scholar

10. Unal G, Canbeyli R. Psychomotor retardation in depression: A critical measure of the forced swim test. Behav Brain Res [Internet]. 2019;372:112047.10.1016/j.bbr.2019.11204731255672Search in Google Scholar

11. Yang J, Jin HJ, Mocaër E, Seguin L, Zhao H, Rusak B. Agomelatine affects rat suprachiasmatic nucleus neurons via melatonin and serotonin receptors. Life Sci [Internet]. 2016;155:147–54.10.1016/j.lfs.2016.04.03527269050Search in Google Scholar

12. Lu Y, Ho CS, McIntyre RS, Wang W, Ho RC. Agomelatine-induced modulation of brain-derived neurotrophic factor (BDNF) in the rat hippocampus. Life Sci [Internet]. 2018;210:177–84.10.1016/j.lfs.2018.09.00330193943Search in Google Scholar

13. Ho RC. Effects of different antidepressants on pro-inflammatory cytokines in rats undergoing chronic mild stress without lipopolysaccharide induction. J Psychosom Res [Internet]. 2015;78(6):602–3.10.1016/j.jpsychores.2015.03.057Search in Google Scholar

eISSN:
1313-9053
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Ophthalmology, Public Health, Pharmacy, Clinical Pharmacy