Open Access

A Review of Fiber Synergy in Hybrid Fiber Reinforced Concrete


Cite

Afroughsabet, V., & Ozbakkaloglu, T. (2015). “Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers.” Construction and Building Materials, 94, 73–82.10.1016/j.conbuildmat.2015.06.051Search in Google Scholar

Alhozaimy, A. M., Soroushian, P., & Mirza, F. (1996). “Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials.” Cement and Concrete Composites, 18(2), 85–92.10.1016/0958-9465(95)00003-8Search in Google Scholar

Amizah, W., Jusoh, W., Ibrahim, I. S., Rahman, A., & Sam, M. (2017). “Flexural Behaviour of Reinforced Concrete Beams With Discrete Steel – Polypropylene Fibres.” MATEC Web of Conferences, 01020.10.1051/matecconf/201710101020Search in Google Scholar

Arisoy, B., & Wu, H.-C. (2008). “Material characteristics of high performance lightweight concrete reinforced with PVA.” Construction and Building Materials, 22(4), 635–645.10.1016/j.conbuildmat.2006.10.010Search in Google Scholar

Balaguru, P. N., & Shah, S. P. (1992). Fiber Reinforced Cement Composites. McGraw-Hill; First Edition edition.Search in Google Scholar

Banthia, N., Cangiano, S., Cucitore, R., Plizzari, G. A., & Sorelli, L. (2003). “Hybrid Fibre Reinforced Concrete under Fatigue Loading.” International Conference on FATIGUE CRACK PATHS (FCP 2003), Parma (Italy), 18 – 20 September, 2003, (Fcp), 18–20.Search in Google Scholar

Banthia, N., & Gupta, R. (2004). “Hybrid fiber reinforced concrete (HyFRC): Fiber synergy in high strength matrices.” Materials and Structures/Materiaux et Constructions, 37(274), 707–716.10.1617/14095Search in Google Scholar

Banthia, N., & Nandakumar, N. (2003). “Crack growth resistance of hybrid fiber reinforced cement composites.” Cement and Concrete Composites, 25(1), 3–9.10.1016/S0958-9465(01)00043-9Search in Google Scholar

Banthia, N., & Sappakittipakorn, M. (2007). “Toughness enhancement in steel fiber reinforced concrete through fiber hybridization.” Cement and Concrete Research, 37(9), 1366–1372.10.1016/j.cemconres.2007.05.005Search in Google Scholar

Banthia, N., & Sheng, J. (1990). “Micro-reinforced cementitious materials.” In Materials Research Society Fall Meeting Proceedings (pp. 25–32).10.1557/PROC-211-25Search in Google Scholar

Banthia, N., & Soleimani, S. M. (2005). “Flexural response of hybrid fiber-reinforced cementitious composites.” ACI Materials Journal, 102(6), 382–389.10.14359/14800Search in Google Scholar

Bentur, A., & Mindess, S. (2006). Fiber Reinforced Cementitious Composites. Civil Engineering.10.1201/9781482267747Search in Google Scholar

Bindiganavile, V., & Banthia, N. (2001). “Polymer and steel fiber-reinforced cementitious composites under impact loading - Part 1: Bond-slip response.” ACI Materials Journal, 98(1), 10–16.10.14359/10155Search in Google Scholar

Dong, C., Sudarisman, & Davies, I. J. (2013). “Flexural properties of e glass and TR50S carbon fiber reinforced epoxy hybrid composites.” Journal of Materials Engineering and Performance, 22(1), 41–49.10.1007/s11665-012-0247-7Search in Google Scholar

Eswari, S., Raghunath, P. N., & Kothandaraman, S. (2011). “Regression modeling for strength and toughness evaluation of hybrid fibre reinforced concrete.” ARPN Journal of Engineering and Applied Sciences, 6(5).Search in Google Scholar

He, D., Wu, M., & Jie, P. (2017). “Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete.” IOP Conf. Series: Earth and Environmental Science, 73(1).10.1088/1755-1315/100/1/012111Search in Google Scholar

Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.” Cement and Concrete Research, 6(6), 773–781.10.1016/0008-8846(76)90007-7Search in Google Scholar

Hong, S. G., & Choi, K. K. (2012). “Crack modeling of steel-carbon hybrid FRCCs.” Advanced Composite Materials, 21(4), 283–298.10.1080/09243046.2012.736345Search in Google Scholar

Jadhav, H. S., & Koli, M. D. (2013). “Flexural Behavior of Hybrid Fiber Reinforced Concrete Beams.” International Journal of Structural and Civil Engineering Research, 2(3), 210–218.Search in Google Scholar

Jayaprakasan, V., & Divya, R. (2015). “Comparative study of hybrid fiber reinforced concrete and find optimum dosage of fiber.” Int J Appl Civil Environ Eng, 16–23.Search in Google Scholar

Johnston, C. (1974). “Steel fibre reinforced mortar and concrete – a review of mechanical properties.” Fiber Reinforced Concr. SP-44, ACI, 127–142.Search in Google Scholar

Kim, J. K., Yi, S. T., & Kim, J. H. J. (2001). “Effect of specimen sizes on flexural compressive strength of concrete.” ACI Structural Journal, 98(3), 416–424.10.14359/10230Search in Google Scholar

Kobayashi, K., & Cho, R. (1982). “Flexural characteristics of steel fiber and polypropylene fiber hybrid reinforced concrete.” Composites, 13, 164–168.10.1016/0010-4361(82)90054-4Search in Google Scholar

Larsen, E. T., & Krenchel, H. (1991). “Durability of FRC-Materials. In: Sidney Mindess and Jan Skalny.” In Fiber-reinforced Cementitious Materials: Symposium, Boston, Massachusetts, 1990, Materials Research Society Symposia Proceedings Vol. 211, Materials Research Society, Pittsburgh (pp. 119–124).10.1557/PROC-211-119Search in Google Scholar

Lawler, J. S., Zampini, D., & Shah, S. P. (2002). “Permeability of cracked hybrid fiber-reinforced mortar under load.” ACI Materials Journal, 99(4), 379–385.10.14359/12220Search in Google Scholar

Mei, G. D., Xu, L. H., Li, S., & Chi, Y. (2012). “Hybrid Effects on Strength of Steel-Polypropylene Hybrid Fiber Reinforced Concrete under Uniaxial and Triaxial Compression.” Applied Mechanics and Materials, 268270, 782–787.10.4028/www.scientific.net/AMM.268-270.782Search in Google Scholar

Mette, G., & Aarre, T. (1990). “High-Strength Concrete with Increased Fracture-Toughness.” Symposium O – Fiber-Reinforced Cementitious Materials, 39.Search in Google Scholar

Mobasher, B., & Li, C. Y. (1996). “Mechanical properties of hybrid cement-based composites.” ACI Materials Journal, 93(3), 284–292.10.14359/9813Search in Google Scholar

Plizzari, G. A., Cangiano, S., & Alleruzzo, S. (1997). “The fatigue behaviour of cracked concrete.” Fatigue and Fracture of Engineering Materials and Structures, 20(8), 1195–1206.10.1111/j.1460-2695.1997.tb00323.xSearch in Google Scholar

Qian, C., & Stroeven, P. (2000). “Fracture properties of concrete reinforced with steel - polypropylene hybrid fibres.” Cement and Concrete Composites, 22, 343–351.10.1016/S0958-9465(00)00033-0Search in Google Scholar

Qian, C. X., & Stroeven, P. (2000). “Development of hybrid polypropylene-steel fibre-reinforced concrete.” Cement and Concrete Research, 30(1), 63–69.10.1016/S0008-8846(99)00202-1Search in Google Scholar

Ravichandran, A., Suguna, K., & Ragunath, P. N. (2009). “Strength modeling of high-strength concrete with hybrid fibre reinforcement.” American Journal of Applied Sciences, 6(2), 219–223.10.3844/ajassp.2009.219.223Search in Google Scholar

Selina Ruby, G., Geethanjali, C., Varghese, J., & Priya, P. M. (2014). “Influence of hybrid fibre reinforced concrete.” International Journal of Advanced Structures and Geotechnical Engineering.Search in Google Scholar

Shan, Y., & Liao, K. (2002). “Environmental fatigue behavior and life prediction of unidirectional glass-carbon/epoxy hybrid composites.” International Journal of Fatigue, 24(8), 847–859.10.1016/S0142-1123(01)00210-9Search in Google Scholar

Skazlić, M. (2009). “Utilization of high performance fiber-reinforced micro-concrete as a repair material.” Civil Engineering, 859–862.Search in Google Scholar

Skazlić, M., & Bjegović, D. (2009). “Toughness testing of ultra high performance fibre reinforced concrete.” Materials and Structures/Materiaux et Constructions, 42(8), 1025–1038. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-68849097946&partnerID=40&md5=684a9a2435e0d76878f8373a5526600eSearch in Google Scholar

Slowik, V., Plizzari, G. A., & Saouma, V. E. (1996). “Fracture of concrete under variable amplitude fatigue loading.” ACI Materials Journal, 93(3).10.14359/9812Search in Google Scholar

Song, P. S., & Hwang, S. (2004). “Mechanical properties of high-strength steel fiber-reinforced concrete.” Construction and Building Materials, 18(9), 669–673.10.1016/j.conbuildmat.2004.04.027Search in Google Scholar

Song, P. S., Wu, J. C., Hwang, S., & Sheu, B. C. (2005). “Statistical analysis of impact strength and strength reliability of steel-polypropylene hybrid fiber-reinforced concrete.” Construction and Building Materials, 19(1), 1–9.10.1016/j.conbuildmat.2004.05.002Search in Google Scholar

Sun, W., Chen, H., Luo, X., & Qian, H. (2001). “The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete.” Cement and Concrete Research, 31(4), 595–601.10.1016/S0008-8846(00)00479-8Search in Google Scholar

Swolfs, Y., Geboes, Y., Gorbatikh, L., & Pinho, S. T. (2017). “The importance of translaminar fracture toughness for the penetration impact behaviour of woven carbon/glass hybrid composites.” Composites Part A: Applied Science and Manufacturing, 103, 1–8.10.1016/j.compositesa.2017.09.009Search in Google Scholar

Walton, P. L., & Majumdar, a. J. (1975). “Cement-based composites with mixtures of different types of fibres.” Composites, 6(5), 209–216.10.1016/0010-4361(75)90416-4Search in Google Scholar

Weiss, W., & Shah, S. (2002). “Restrained shrinkage cracking: the role of shrinkage reducing admixtures and specimen geometry.” Materials and Structures, 35(March), 85–91.10.1007/BF02482106Search in Google Scholar

Wisnom, M. R., Czél, G., Swolfs, Y., Jalalvand, M., Gorbatikh, L., & Verpoest, I. (2016). “Hybrid effects in thin ply carbon/glass unidirectional laminates: Accurate experimental determination and prediction.” Composites Part A: Applied Science and Manufacturing, 88, 131–139.10.1016/j.compositesa.2016.04.014Search in Google Scholar

Wu, Z., Wang, X., Iwashita, K., Sasaki, T., & Hamaguchi, Y. (2010). “Tensile fatigue behaviour of FRP and hybrid FRP sheets.” Composites Part B: Engineering, 41(5), 396–402.10.1016/j.compositesb.2010.02.001Search in Google Scholar

Xu, G., & Hannant, D. J. (1992). “Flexural behaviour of combined polypropylene network and glass fibre reinforced cement.” Cement and Concrete Composites, 14(1), 51–61.10.1016/0958-9465(92)90039-XSearch in Google Scholar

Xu, G., Magnani, S., & Hannant, D. J. (1998). “Durability of hybrid polypropylene-glass fibre cement corrugated sheets.” Cement and Concrete Composites, 20(1), 79–84.10.1016/S0958-9465(97)00075-9Search in Google Scholar

Xu, L., Huang, L., Chi, Y., & Mei, G. (2016). “Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete.” ACI Materials Journal, 113(2), 219–229.10.14359/51688641Search in Google Scholar

Yao, W., Li, J., & Wu, K. (2003). “Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction.” Cement and Concrete Research, 33(1), 27–30.10.1016/S0008-8846(02)00913-4Search in Google Scholar

Yazici, H. (2008). “The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete.” Construction and Building Materials, 22(4), 456–462.10.1016/j.conbuildmat.2007.01.002Search in Google Scholar

Yusof, M. A., Mohamad Nor, N., Ismail, A., Choy Peng, N., Mohd Sohaimi, R., & Yahya, M. A. (2013). “Performance of hybrid steel fibers reinforced concrete subjected to air blast loading.” Advances in Materials Science and Engineering, 2013(14), 7 pages.10.1155/2013/420136Search in Google Scholar

Zheng, Z., & Feldman, D. (1995). “Synthetic fibre-reinforced concrete.” Progress in Polymer Science.10.1016/0079-6700(94)00030-6Search in Google Scholar

eISSN:
2284-7197
ISSN:
2247-3769
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy