Open Access

In vivo analysis of Bisphenol A induced dose-dependent adverse effects in cauda epididymis of mice


Cite

Agarwal A, Bertolla RP, Samanta L. (2016). Sperm proteomics: potential impact on male infertility treatment. Expert Rev Proteomics13(3): 285–296.10.1586/14789450.2016.1151357Search in Google Scholar

Agarwal A, Virk G, Ong C, du Plessis SS. (2014). Effect of oxidative stress on male reproduction. World J Mens Health32(1): 1–17.10.5534/wjmh.2014.32.1.1Search in Google Scholar

Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. (2016). Causes and consequences of oxidative stress in spermatozoa. Reproduction Fertil Dev28(2): 1–10.10.1071/RD15325Search in Google Scholar

Aitken RJ, Smith TB, Jobling MS, Baker MA, De Iuliis GN. (2014). Oxidative stress and male reproductive health. Asian J Androl16(1): 31.10.4103/1008-682X.122203Search in Google Scholar

Amaral SS Tavares R, Baptista MI, Sousa M, Silva A, Escada-Rebelo S, Paiva PC. and Ramalho-Santos J. (2016). Mitochondrial Functionality and Chemical Compound Action on Sperm Function. Curr Med Chem23(31): 3575–3606.10.2174/0929867323666160425113518Search in Google Scholar

Barnes S, Shonsey EM, Eliuk SM, Stella D, Barrett K, Srivastava OP, Kim H, Renfrow MB. (2008). High-resolution mass spectrometry analysis of protein oxidations and resultant loss of function. Biochem Soc Trans36(5): 1037–1044.10.1042/BST0361037Search in Google Scholar

Beatty CH, Basinger GM, Dully CC, Bocek RM. (1966). Comparison of red and white voluntary skeletal muscles of several species of primates. Journal of Histochemistry & Cytochemistry.14(8): 590–600.10.1177/14.8.590Search in Google Scholar

Bindhumol V, Chitra KC, Mathur PP. (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology.188(2): 117–124.10.1016/S0300-483X(03)00056-8Search in Google Scholar

Carwile JL, Luu HT, Bassett LS, Driscoll DA, Yuan C, Chang JY, Ye X, Calafat AM, Michels KB. (2009). Polycarbonate bottle use and urinary bisphenol A concentrations. Environ Health Perspect117(9): 1368.10.1289/ehp.0900604Search in Google Scholar

Chen M, Xu B, Ji W, Qiao S, Hu N, Hu Y, Wu W, Qiu L, Zhang R, Wang Y, Wang S. (2012). Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: a LC-QTOF-based metabolomics study. PloS one.7(9): e44754.10.1371/journal.pone.0044754Search in Google Scholar

Chitra KC, Rao KR, Mathur PP. (2003). Effect of bisphenol A and co-administration of bisphenol A and vitamin C on epididymis of adult rats: a histological and biochemical study. Asian J Androl5(3): 203–208.Search in Google Scholar

Chitra KC, Sujatha R, Latchoumycandane C, Mathur PP. (2001). Effect of lin-dane on antioxidant enzymes in epididymis and epididymal sperm of adult rats. Asian J Androl3(3): 205–8.Search in Google Scholar

Clermont Y. (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev52(1): 198–236.10.1152/physrev.1972.52.1.198Search in Google Scholar

Collins AJ, Lewis DA. (1971). Lysosomal enzyme levels in the blood of arthritic rats. Biochem Pharmacol20(1): 251–253.10.1016/0006-2952(71)90496-5Search in Google Scholar

Cornwall GA. (2009). New insights into epididymal biology and function. Hum Reprod Update15(2): 213–227.10.1093/humupd/dmn055Search in Google Scholar

Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR, Davis KJ, Patton RE, da Costa GG, Woodling KA, Bryant MS. (2014). Toxicity evaluation of bisphenol A administered by gavage to Sprague-Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci139(1): 174–97.10.1093/toxsci/kfu022Search in Google Scholar

El-Missiry MA, Othman AI, Al-Abdan MA, El-Sayed AA. (2014). Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis. J Neurol Sci347(1): 251–256.10.1016/j.jns.2014.10.009Search in Google Scholar

Elswefy SES, Abdallah FR, Atteia HH, Wahba AS, Hasan RA. (2016). Inflammation, oxidative stress and apoptosis cascade implications in bisphenol A-induced liver fibrosis in male rats. Int J Exp Pathol97(5): 369–379.10.1111/iep.12207Search in Google Scholar

Fridovich I. (1978). The biology of oxygen radicals. Science201(4359): 875–880.10.1126/science.210504Search in Google Scholar

Gabrielsen JS, Tanrikut C. (2016). Chronic exposures and male fertility: the impacts of environment, diet, and drug use on spermatogenesis. Andrology4(4): 648–661.10.1111/andr.12198Search in Google Scholar

Gómez-Sintes R, Ledesma MD, Boya P. (2016). Lysosomal cell death mechanisms in aging. Ageing Res Rev32: 150–168.10.1016/j.arr.2016.02.009Search in Google Scholar

Hassan ZK, Elobeid MA, Virk P, Omer SA, ElAmin M, Daghestani MH, AlOlayan EM. (2012). Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid Med Cell Longev2012: 194829.10.1155/2012/194829Search in Google Scholar

Hess RA, de Franca LR. (2009). Spermatogenesis and cycle of the seminiferous epithelium. In Molecular Mechanisms in Spermatogenesis. Springer New York. 1–1510.1007/978-0-387-09597-4_1Search in Google Scholar

Iacobazzi V, Infantino V. (2014). Citrate–new functions for an old metabolite. Biol Chem395(4): 387–399.10.1515/hsz-2013-0271Search in Google Scholar

Jourdian GW, Dean L, Roseman S. (1971). The sialic acids XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J Biol Chem246(2): 430–435.10.1016/S0021-9258(18)62508-6Search in Google Scholar

Kabuto H, Hasuike S, Minagawa N, Shishibori T. (2003). Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ Res93(1): 31–35.10.1016/S0013-9351(03)00062-8Search in Google Scholar

Kakkar P, Das B, Viswanathan PN. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys21: 130–132.Search in Google Scholar

Kimura T, Kimura N, Totsukawa K. (2007). Effect of Compound Exposure to Bisphenol A and Nonylphenol on the Development and Fertility of Fetal Mice. J Mamm Ova Res24(1): 35–41.10.1274/jmor.24.35Search in Google Scholar

La Spina FA, Stival C, Krapf D, Buffone MG. (2017). Molecular and cellular aspects of mammalian sperm acrosomal exocytosis. In: Animal Models and Human Reproduction, Schatten H, Constantinescu GM, eds., Wiley-Blackwell, pp. 409–426.10.1002/9781118881286.ch15Search in Google Scholar

Lanning LL, Creasy DM, Chapin RE, Mann PC, Barlow NJ, Regan KS, Goodman DG. (2002). Recommended approaches for the evaluation of testicular and epididymal toxicity. Toxicol Pathol30(4): 507–520.10.1080/01926230290105695Search in Google Scholar

Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ES. (2016). Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev96(1): 307–364.10.1152/physrev.00010.2014Search in Google Scholar

Levinsky H, Singer R, Barnet M, Sagiv M, Allalouf D. (1983). Sialic acid content of human spermatozoa and seminal plasma in relation to sperm counts. Arch Androl10(1): 45–46.10.3109/01485018308990169Search in Google Scholar

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem193(1): 265–275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

Luck H. (1963). A spectrophotometric method for the estimation of catalase. In Methods of Enzymatic Analysis, Bergmeyer HU (ed.), Academic Press, New York, NY, USA, pp. 886–887.Search in Google Scholar

Ohkawa H, Ohishi N, Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem95(2): 351–358.10.1016/0003-2697(79)90738-3Search in Google Scholar

Paglia DE, Valentine WN. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Transl Res70(1): 158–169.Search in Google Scholar

Parker RM. (2006). Testing for reproductive toxicity. In: Developmental and Reproductive Toxicology. Hood RD (ed.), Taylor & Francis, Boca Raton, pp. 425–488.10.1201/9781420040548.ch10Search in Google Scholar

Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V. (2012). The role of mitochondria in energy production for human sperm motility. Int J Androl35(2): 109–124.10.1111/j.1365-2605.2011.01218.xSearch in Google Scholar

Prescott C, Bottle SE. (2016). Biological Relevance of Free Radicals and Nitroxides. Cell Biochem Biophys75(2): 227–24010.1007/s12013-016-0759-0Search in Google Scholar

Putilina PE, Eschanko ND. (1969). Activity of some Kreb’s cycle dehydrogenases in the brain, liver and kidneys. Yestln. Leningrad. Univ Ser Biol24: 112–116.Search in Google Scholar

Qiu LL, Wang X, Zhang XH, Zhang Z, Gu J, Liu L, Wang Y, Wang X, Wang SL. (2013). Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol Lett219(2): 116–124.10.1016/j.toxlet.2013.03.011Search in Google Scholar

Quinn PJ, White IG 1968 Distribution of adenosinetriphosphatase activity in ram and bull spermatozoa. J Reprod Fertil15(3): 449–452.10.1530/jrf.0.01504494230707Search in Google Scholar

Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. (2009). Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Human Reprod Update. 15(5): 553–572.10.1093/humupd/dmp016Search in Google Scholar

Ranjit N, Siefert K, Padmanabhan V. (2010). Bisphenol-A and disparities in birth outcomes: a review and directions for future research. J Perinatol30(1): 2–9.10.1038/jp.2009.90Search in Google Scholar

Robaire B, Hermo L. (1988). Efferent ducts, epididymis, and vas deferens: structure, functions, and their regulation. In: The Physiology of Reproduction, Knobil E. et al. (eds.), Raven Press, New York, NY, pp. 999–1080.Search in Google Scholar

Rochester JR. (2013). Bisphenol A and human health: a review of the literature. Reprod Toxicol42: 132–155.10.1016/j.reprotox.2013.08.008Search in Google Scholar

Samova S, Doctor H, Verma RJ. (2016). Spermatotoxic effect of bisphenol a and its amelioration using quercetin. World J Pharm Pharm Sci5(5): 1161–1175.Search in Google Scholar

Sangai NP, Verma RJ. (2012). Quercetin ameliorates bisphenol A-induced toxicity in mice. Acta Pol Pharm Drug Res69(3): 557–563.Search in Google Scholar

Serre V & Robaire B. (1998). Segment-specific morphological changes in aging brown Norway rat epididymis. Biol Reprod58(2): 497–513.10.1095/biolreprod58.2.497Search in Google Scholar

Sigma Technical Bulletin No. 104, Sigma Chemical Co., 3500, Dekoib St. Louis 18, MO, USA, 2001.Search in Google Scholar

Stadman ER. (2001). Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci928(1): 22–38.10.1111/j.1749-6632.2001.tb05632.xSearch in Google Scholar

Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere.36(10): 2149–2173.10.1016/S0045-6535(97)10133-3Search in Google Scholar

Takahashi O, Oishi S. (2001). Testicular toxicity of dietary 2, 2-bis (4-hydroxyphenyl) propane (bisphenol A) in F344 rats. Arch Toxicol75(1): 42–51.10.1007/s002040000204Search in Google Scholar

Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. (2010). Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect118(8): 1055–1070.10.1289/ehp.0901716Search in Google Scholar

Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. (2007). Human exposure to bisphenol A (BPA). Reprod Toxicol24(2): 139–177.10.1016/j.reprotox.2007.07.010Search in Google Scholar

Verma RJ & Sangai NP. (2009). The ameliorative effect of black tea extract and quercetin on bisphenol A-induced cytotoxicity. Acta Pol Pharm.66(1): 41–44.Search in Google Scholar

Vom Saal FS, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, Parmigiani S, Welshons WV. (1998). A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health14(1–2): 239–260.10.1177/074823379801400115Search in Google Scholar

Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM. (2007). In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol24(2): 178–198.10.1016/j.reprotox.2007.05.010Search in Google Scholar

Wright C, Milne S, Leeson H. (2014). Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online28(6): 684–703.10.1016/j.rbmo.2014.02.004Search in Google Scholar

Xia W, Jiang Y, Li Y, Wan Y, Liu J, Ma Y, Mao Z, Chang H, Li G, Xu B, Chen X. (2014). Early-life exposure to bisphenol a induces liver injury in rats involvement of mitochondria-mediated apoptosis. PloS one.9(2): p.e90443.10.1371/journal.pone.0090443Search in Google Scholar

Zeisel SH. (2012). Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones. Mutat Res733(1): 34–38.10.1016/j.mrfmmm.2011.10.008Search in Google Scholar

eISSN:
1337-9569
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Pharmacology, Toxicology