Open Access

Interactive effect of Meloidogyne incognita and Macrophomina phaseolina on the development of root–rot disease complex in relation to growth and physiological attributes of chickpea

 and    | Dec 21, 2019

Cite

Abawi, G.S. and Barker, K.R. 1984. Effects of cultivar, soil temperature, and population levels of Meloidogyne incognita on root–necrosis and Fusarium wilt of tomatoes. Phytopathology, 74: 433–438.10.1094/Phyto-74-433Search in Google Scholar

Abdel–Momen, S.M. and Starr, J.L. 1998. Meloidogyne javanicaRhizoctonia solani disease complex of peanut. Fundamental and Applied Nematology, 21: 611–6.Search in Google Scholar

Ahmed, D., Shahab, S. and Safiuddin. 2014. Disease complex of Meloidogyne incognita and Fusarium solani on Chilli (Capsicum annuum L.). Journal of Natural Product and Plant Resources, 4 (5): 14–18.Search in Google Scholar

Al–Hazmi, A.S. and Al–Nadary, S.N. 2015. Interaction between Meloidogyne incognita and Rhizoctonia solani on green beans. Saudi Journal of Biological Sciences, 22: 570–574.10.1016/j.sjbs.2015.04.008Search in Google Scholar

Ali, L., Deokar, A., Caballo, C., Tar’an, B., Gil, J., Chen, W., Millan, T. and Rubio, J. 2016. Fine mapping for double podding gene in chickpea. Theoretical and Applied Genetics, 129(1): 77–86.10.1007/s00122-015-2610-1Search in Google Scholar

Aliu, S., Kaul, H.P., Rusinovci, I., Shala–May, V., Fetahu, S. and Zeka, D. 2016. Genetic diversity for some nutritive traits of chickpea (Cicer arietinum L.) From different regions in Kosova. Turkish Journal of Field Crops, 21(1): 155–160.10.17557/tjfc.57905Search in Google Scholar

Ansari, R.A. and Mahmood, I. 2017. Optimization of organic and bio–organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226: 1–9.10.1016/j.scienta.2017.07.033Search in Google Scholar

Aoyagi, T., Kageyama, K. and Hyakumachi, M. 1998. Characterization and survival of Rhizoctonia solani AG2–2 LP associated with large patch disease of Zoysia grass. Plant Disease, 82: 857–863.10.1094/PDIS.1998.82.8.857Search in Google Scholar

Ashraf, M.S. and Khan, T.A. 2005. Effect of opportunistic fungi on the life cycle of the rootknot nematode (Meloidogyne javanica) on brinjal. Archives of Phytopathology and Plant Protection, 38 (3): 227–233 ISSN 0323–5408.10.1080/03235400500094498Search in Google Scholar

Back, M.A., Haydock, P.P.J. and Jenkinson P. 2002. Disease complexes involving plant parasitic nematodes and soilborne pathogens, Plant Pathology, 51: 683–697.10.1046/j.1365-3059.2002.00785.xSearch in Google Scholar

Bergeson, G.B. 1972. Concepts of nematode–fungus associations in plant disease complexes: a review. Experimental Parasitology, 32: 301–14.10.1016/0014-4894(72)90037-9Search in Google Scholar

Castillo, P., Mora-Rodriguez, M.P., Navas-Cortés, J.A. and Jiménez–Díaz, R.M. 1998. Interactions of Pratylenchus thornei and Fusarium oxysporum f. sp. ciceris on chickpea. Phytopathology, 88(8): 828 – 836.10.1094/PHYTO.1998.88.8.828Search in Google Scholar

Chahal, P.P.K. and Chahal, V.P.S. 1991. Effect of Rhizobium and root–knot nematodes in nitrogen fixation and nitrate utilization in chickpea (Cicer arietinum L.). Journal of Ravishankar University, 4–5(B): 43–45.Search in Google Scholar

Clarke, A.J. and Hennessy, J. 1987. Hatching agents as stimulants of movement of Globodera rostochiensis juveniles. Revue de Nematologie, 10: 471–6.Search in Google Scholar

Daykin, M.E. and Hussey, R.S. 1985. Staining and histopathological techniques in nematology. In: Barker, K.R., Carter, C.C., Sasser, J.N. (eds.): An advance treatise on Meloidogyne. – Vol. II: Methodology, PP. 39-48. North Carolina State University Graphics, 1.Search in Google Scholar

Evans, K. and Haydock, P.P.J. 1993. Interactions of nematodes with root–rot fungi. In: Wajid Khan M, ed. Nematode Interactions. London, UK: Chapman & Hall, 104–33.10.1007/978-94-011-1488-2_6Search in Google Scholar

Fazal, M., Khan, M.I., Raza, M.M.A. and Siddiqui, Z.A. 1994. Interaction between Meloidogyne incognita and F. oxysporum f. sp. lentis on lentil. Nematologia Mediterranea, 2: 185–187.Search in Google Scholar

Fiske, C.H. and Subbarow, Y. 1925. The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66: 375–400.10.1016/S0021-9258(18)84756-1Search in Google Scholar

Food and Agriculture Organization of the United Nations statistical database (FAOSTAT), (2016). FAO Statistical Databases. Online database, http://faostat.fao.org/.Search in Google Scholar

Food and Agriculture Organization of the United Nations statistical database (FAOSTAT), (2015). FAO Statistical Databases. Online database, http://faostat.fao.org/.Search in Google Scholar

France, R.A. and Abawi, G.S. 1994. Interaction between Meloidogyne incognita and Fusarium oxysporum f.sp. phaseoli on selected bean genotypes. Journal of Nematology, 26: 467–474.Search in Google Scholar

Ganaie, M.A. and Khan, T.A. 2011. Studies on the interactive effect of Meloidogyne incognita and Fusarium solani on Lycopersicon esculentum, Mill. International Journal of Botany, 7(2): 205–208.10.3923/ijb.2011.205.208Search in Google Scholar

Ghazalbash, N. and Abdollahi, M. 2012. Effect of medicinal plant extracts on physiological changes in tomato, inoculated with Meloidogyne javanica and Fusarium oxysporum f. sp. lycopersici, Pakistan Journal of Nematology, 31 (1): 21–37.Search in Google Scholar

Golden, J.K. and Van Gundy, S.D. 1975. A disease complex of okra and tomato involving the nematode Meloidogyne incognita, and the soil–inhabiting fungus, Rhizoctonia solani. Phytopathology, 65: 265–73.10.1094/Phyto-65-265Search in Google Scholar

Grayston, S.J., Vaughan, D. and Jones, D. 1997. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5: 29–56.10.1016/S0929-1393(96)00126-6Search in Google Scholar

Hasan, A. 1989. Efficacy of certain non-fumigant nematicides on the control of pigeon pea wilt involving Heterodera cajani and Fusarium udum. Phytopathology, 126: 335–342.10.1111/j.1439-0434.1989.tb04496.xSearch in Google Scholar

Hiscox, J.D. and Israelstam, G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57: 1332–1334.10.1139/b79-163Search in Google Scholar

Hussey, R.S. and Barker, K.R.A. 1973. Comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease, 57: 1025–1028.Search in Google Scholar

Inagaki, H. and Powell, N.T. 1969. Influence of the root–lesion nematode on black shank symptom development in flue–cured tobacco. Phytopathology, 59: 1350–5.Search in Google Scholar

Iqbal, U. and Mukhtar, T. 2014. Morphological and Pathogenic Variability among Macrophomina phaseolina Isolates Associated with Mungbean (Vigna radiata L.) Wilczek from Pakistan. Scientific World Journal Article ID 950175, 9 pages.10.1155/2014/950175391433124558345Search in Google Scholar

Jaworski, E.G. 1971. Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, 43: 1274–1279.10.1016/S0006-291X(71)80010-4Search in Google Scholar

Jones, M.G.K. 1981. Host cell responses to endoparasitic attack: structure and function of giant cells and syncytia. Annals of Applied Biology, 97: 353–72.10.1111/j.1744-7348.1981.tb05122.xSearch in Google Scholar

Khan, M.W. and Muller, J. 1982. Interaction between Rhizoctonia solani and Meloidogyne hapla in gnotobiotic culture. Libyan Journal of Agriculture, 11: 133–40.Search in Google Scholar

Kumar, V., Kumar, A. and Kharwar, R.N. 2007. Antagonistic potential of fluorescent Pseudomonads and control of charcoal rot of Chickpea caused by Macrophomina phaseolina. Journal of Environmental Biology, 28(1): 15–20.Search in Google Scholar

Lindner, R.C. 1944. Rapid analytical methods for some of the more common inorganic constituents of plant tissue. Plant Physiology, 19: 76–89.10.1104/pp.19.1.76Search in Google Scholar

Lindner, S. 1974. A proposal for the use of standardized methods for chlorophyll determinations in ecological and eco–physiological investigations. Physiologia Plantarum, 32: 154–156.10.1111/j.1399-3054.1974.tb03743.xSearch in Google Scholar

Lobna, H., Hajer, R., Naima, M. and Najet, H. 2016. Studies on Disease Complex Incidence of Meloidogyne javanica and Fusarium oxysporum f. sp. lycopersici on resistant and susceptible tomato cultivars. Journal of Agricultural Science and Food Technology, 2 (4): 41–48.Search in Google Scholar

Lorenzini, G., Guidi, L., Nali, C., Ciompi, S. and Sodatin, G.F. 1997. Photosynthetic response of tomato plants to vascular wilt diseases. Plant Science, 124: 143–52.10.1016/S0168-9452(97)04600-1Search in Google Scholar

Meena, K.S., Ramyabharathi, S.A., Raguchander, T. and Jonathan, E.I. 2016. Interaction of Meloidogyne incognita and Fusarium oxysporum in carnation and physiological changes induced in plants due to the interaction. SAARC Journal of Agriculture, 14(1): 59–69.10.3329/sja.v14i1.29576Search in Google Scholar

Mohiddin, F.A. Khan, and M.R. 2014. Root–knot nematode: Ignored soil borne plant pathogen causing root diseases of chickpea. European Journal of Biotechnology and Bioscience, 2 (1): 04–10Search in Google Scholar

Mokbel, A.A., Ibrahim, I.K.A., Shehata, M.R.A. and El–Saedy, M.A.M. 2007. Interaction between certain root rot disease fungi and root–knot nematode Meloidogyne incognita on sunflower plants. Egyptian Journal of Phytopathology, 35: 1–11.Search in Google Scholar

Naik, M.S., Abrol, Y.P., Nair, T.V.R. and Ramarao, C.S. 1982. Nitrate assimilation–its regulation and relationship to reduced nitrogen in higher plants. Phytochemistry, 21: 495–504.10.1016/0031-9422(82)83128-2Search in Google Scholar

Naseri, B., Veisi, M. and Khaledi, N. 2018. Towards a better understanding of agronomic and soil basis for possible charcoal root rot control and production improvement in bean. Archives of Phytopathology and Plant Protection, 1-10.10.1080/03235408.2018.1481721Search in Google Scholar

Ogaraku, A.O. 2008. Separate and combined effect of Fusarium oxysporum f. sp. tracheiphilum and Meloidogyne incognita on growth and yield of cowpea (Vigna unguiculata L. Walp) var. Moussa–local. Plant Pathology Journal, 7(1): 114–117.10.3923/ppj.2008.114.117Search in Google Scholar

Oostenbrink, M. 1966. Major Characteristics of the Relation Between Nematodes and Plants. Land-booughwhogesch. Wageningen 66–4. 46 pp.Search in Google Scholar

Palomares–Rius, J.E., Castillo, P., Juan, A., Navas–Cortés, Jiménez–Díaz, R.M. and Tena, M. 2011. A proteomic study of in–root interactions between chickpea pathogens: The root–knot nematode Meloidogyne artiellia and the soil–borne fungus Fusarium oxysporum f. sp. ciceris race 5. Journal of Proteomics, 74: 2034 – 2051.10.1016/j.jprot.2011.05.02621640211Search in Google Scholar

Reddy, M.N. 1980. Studies on groundnut hypocotyl exudates and the behaviour of Rhizoctonia solani in influencing disease. Plant and Soil, 55: 445–54.10.1007/BF02182704Search in Google Scholar

Riker, R.J. and Riker, R.S. 1936. Introduction to Research on Plant Disease. John’s Swift Co. Inc. St. Louis Chicago, New York Indianapolis, 117.Search in Google Scholar

Rizvi, R., Mahmood, I. and Ansari, S. 2016. Interaction between plant symbionts, bio–organic waste and antagonistic fungi in the management of Meloidogyne incognita infecting chickpea. Journal of Saudi Society of Agricultural Sciences, (In Press).Search in Google Scholar

Saeed, I.A.M., McGuidwin, A.E., Rouse, D.I. and Sharkey, T.D. 1999. Limitation to photosynthesis in Pratylenchus penetrans and Verticillium dahliae–infected potato. Crop Science, 39: 1340–1346.10.2135/cropsci1999.3951340xSearch in Google Scholar

Senthamarai, M., Poornima, K., Subramanian, S. and Sudheer, M.J. 2008. Nematode–fungal disease complex involving Meloidogyne incognita and Macrophomina phaseolina on medicinal coleus, Coleus forskohlii Briq. Indian Journal of Nematology, 38(1): 30–33.Search in Google Scholar

Siddiqui, Z.A. and Husain, S.I. 1991. Interaction of Meloidogyne incognita race–3 and Macrophomina phaseolina in root–rot disease complex of chickpea. Nematologia Mediterranea, 19: 237–239.Search in Google Scholar

Siddiqui, Z.A. and Husain, S.I. 1992. Biocontrol of a chickpea root–rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Fundamental and Applied Nematology, 16: 491–494.Search in Google Scholar

Southey, J.F. 1986. Laboratory methods for work with plant and soil nematodes. In: Ministry of Agriculture, Fish. Food. HMSO, London.Search in Google Scholar

Srivastava, A.K., Singh, T., Jana, T.K. and Arora, D.K. 2001. Microbial colonization of Macrophomina phaseolina and suppression of charcoal rot of chickpea A. Sinha (Ed.), Microbes and plants, Vedams eBooks (P) Ltd, New Delhi, pp. 269–319.Search in Google Scholar

Strajnar, P., irca, S., Urek, G., ircelj, H., Železnik, P. and Vodnik, D. 2012. Effect of Meloidogyne ethiopica parasitism on water management and physiological stress in tomato, Eurasian Journal of Plant Pathology, 132:49–57.10.1007/s10658-011-9847-6Search in Google Scholar

Sumbul, A., Rizvi, R., Mahmood, I. and Ansari, R.A. 2015. Oil–Cake Amendments: Useful Tools for the Management of Phytonematodes. Asian Journal of Plant Pathology, 9: 91–111.10.3923/ajppaj.2015.91.111Search in Google Scholar

Windham, G.L. and Williams, W.P. 1987. Host suitability of commercial corn hybrids to Meloidogyne arenaria and Meloidogyne incognita. Journal of Nematology, 19 (Annals 1): 13–16.Search in Google Scholar

eISSN:
1791-3691
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, other