Open Access

Changes in salicylic acid content and pathogenesis - related (PR2) gene expression during barley - Pyrenophora teres interaction


Cite

Abu Qamar, M., Liu, Z. H., Faris, J. D., Chao, S., Edwards, M. C., Lai, Z., Franckowiak, J.D. and Friesen, ・ T.L. 2008. A region of barley chromosome 6H harbors multiple major genes associated with the net type net blotch resistance. Theoretical and Applied Genetics, 117: 1261-1270.10.1007/s00122-008-0860-xSearch in Google Scholar

Akiyama, T., Jin, S., Yoshida, M., Hoshino, T., Opassiri, R. and Cairns, J.R.K. 2009. Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings. Journal of Plant Physiology, 166: 1814-1825.10.1016/j.jplph.2009.06.002Search in Google Scholar

Alvarez, M.E. 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44: 429-442.10.1023/A:1026561029533Search in Google Scholar

Arabi, M.I.E., Al-safadi, B. and Charbaji, T. 2003. Pathogenic Variation among Isolates of Pyrenophorateres the Causal Agent of Barley Net Blotch. Journal of Phytopathology, 151: 376-382.10.1046/j.1439-0434.2003.00734.xSearch in Google Scholar

Bindschedler, V.L., Metraux, J.P. and Schweizer, P. 1998. Salicylic acid accumulation in barley is pathogen specifi c but not required for defensegene activation. Molecular Plant-Microbe Interactions, 11: 702-705.10.1094/MPMI.1998.11.7.702Search in Google Scholar

Bishop, J.G, Dean, A.M. and Mitchell-Olds, T. 2002. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proceedings of the National Academy of Sciences of the United States of America, 97: 5322-5327.10.1073/pnas.97.10.5322Search in Google Scholar

Bogacki, P., Oldach, K. H., and Williams, K.J. 2008. Expression profi ling and mapping of defense response genes associated with the barley- Pyrenophora teres incompatible interaction. Molecular Plant Pathology, 9: 645-660.10.1111/j.1364-3703.2008.00485.xSearch in Google Scholar

Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, J., et al. 1993 Plant chitinases. The Plant Journal, 3: 31-40.10.1046/j.1365-313X.1993.t01-1-00999.xSearch in Google Scholar

Dangl, J.L. and Jones, J.D.G. 2001. Plant pathogens and integrated defense responses to infection. Nature, 411: 826-833.10.1038/35081161Search in Google Scholar

Derveaux, S., Vandesompele, J. and Hellemans, J., 2010. How to do successful gene expression analysis using real-time PCR. Methods, 50: 227-230.10.1016/j.ymeth.2009.11.00119969088Search in Google Scholar

Dong, X.N., 2004. NPR1 all things considered. Current Opinion in Plant Biology, 7: 547-552.10.1016/j.pbi.2004.07.00515337097Search in Google Scholar

Haffner, E., Karlovsky, P., Splivallo, R., Traczewska, A. and Diederichsen, E. 2014. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum. BMC Plant Biology, 14: 71-85.10.1186/1471-2229-14-85Search in Google Scholar

Kralik, P. and Ricchi, M. 2017. A Basic Guide to Real Time PCR in Microbial Diagnostics: Defi nitions, Parameters, and Everything. Frontiers in Microbiology, 8: 108.10.3389/fmicb.2017.00108Search in Google Scholar

Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25: 402-408.10.1006/meth.2001.1262Search in Google Scholar

Liu, Z., Ellwood, S.R., Oliver, R.P. and Friesen, T.L., 2011. Pyrenophora teres profi le of an increasingly damaging barley pathogen. Molecular Plant Pathology, 12: 1-19.10.1111/j.1364-3703.2010.00649.x664022221118345Search in Google Scholar

Opassiri, R., Maneesan, J., Akiyama, T., Pomthong, S., Jin B., Kimura, A. and Ketudat Cairns, J.R. 2010. Rice Os4BGlu12 is a wound-induced β-glucosidase that hydrolyzes cell wall-β- glucan-derived oligosaccharides and glycosides. Plant Science, 179: 273-278.10.1016/j.plantsci.2010.05.013Search in Google Scholar

Simmons, C.R., 1994. The physiology and molecular biology of plant 1,3-P-o-glucanases and 1,3;1,4- P-o-glucanases. Critical Review in Plant Sciences, 13: 325-38710.1080/07352689409701919Search in Google Scholar

Trapp, M.A., De Souza, G.D., Filho, E.R., Boland, W. and Mithofer, A. 2014. Validated method for phytohormone quantifi cation in plants. Frontiers in Plant Science, 5: 417.10.3389/fpls.2014.00417Search in Google Scholar

Trusov, Y., Sewelam, N., Rookes, J.E., Kunkel, M., Nowak, E., Schenk, P.M. and Botella, J.R. 2009. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. The Plant Journal, 58: 69-81.10.1111/j.1365-313X.2008.03755.x19054360Search in Google Scholar

Vasquez, A.H., Salinas, P. and Holuigue, L. 2015. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Frontiers in Plant Science, 6: 171.10.3389/fpls.2015.00171Search in Google Scholar

Wang, X., Mace, E.S., Platz, G.J., Hunt, C.H., Hickey, L.T., Franckowiak, J.D. and Jordan, D.R. 2015. Spot form of net blotch resistance in barley is under complex genetic control. Theoretical and Applied Genetics, 108: 1064-1070.Search in Google Scholar

Wessels, J.G.H. 1994. Developmental regulation of fungal cell-wall formation. Annual Review of Phytopathology, 32: 413-437.10.1146/annurev.py.32.090194.002213Search in Google Scholar

Zwart, L., Berger, D.K., Moleleki, L.N., van der Merwe, N.A., Myburg, A.A. and Naidoo, S. 2017. Evidence for salicylic acid signalling and histological changes in the defence response of Eucalyptus grandis to Chrysoporthe austroafricana. Scientific Reports, 7:45402. doi:10.1038/srep45402.Search in Google Scholar

eISSN:
1791-3691
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, other, Zoology