Open Access

Pedunculate oak stands in the catchments of the river Vorskla’s tributaries


Cite

Carvalho Ribeiro, S.M., Soares Filho, B., Leles Costa, W., Bachi, L., Ribeirode Oliveira, A., Bilotta, P., Saadi, A., Lopes, E., O’Riordan, T., Lôbo Pennacchio, H., Queiroz, L., Hecht, S., Rajão, R., Oliveira, U., Cioce Sampaio, C., 2018. Can multifunctional livelihoods including recreational ecosystem services (RES) and non timber forest products (NTFP) maintain biodiverse forests in the Brazilian Amazon? Ecosystem Services, 31: 517–526. https://doi.org/10.1016/j.ecoser.2018.03.01610.1016/j.ecoser.2018.03.016Search in Google Scholar

Chigrinets, V.P., Ignatenko, V.A., 2015. Osoblyvosti nasinnoho vidnovlennya duba zvychayinoho v zalezhnosti vid stupenya zridzhenosti derevostanu v umovakh svizhoyi klenovo-lypovoyi dibrovy Livoberezhnoho Lisostepu Ukrayiny [Features of pedunculate oak regeneration depending on forest stands thinning degree in the fresh maple-linden oak forests of the Left-bank Forest-Steppe of Ukraine]. Bulletin of Sumy NAU. Series: Agronomy and Biology, 9: 224–227.Search in Google Scholar

De Groote, S.R.E., Vanhellemont, M., Baeten, L., Vanden Bulcke, J., Martel, A., Bonte, D., Lens, L., Verheyen, K., 2018. Competition, tree age and size drive the productivity of mixed forests of pedunculate oak, beech and red oak. Forest Ecology and Management, 430: 609–617. https://doi.org/10.1016/j.foreco.2018.08.05010.1016/j.foreco.2018.08.050Search in Google Scholar

Del Campo, A.D., González-Sanchis, M., García-Prats, A., Ceacero, C.J., Lull, C., 2019a. The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology, 264: 266–282. https://doi.org/10.1016/j.agrformet.2018.10.01610.1016/j.agrformet.2018.10.016Search in Google Scholar

Del Campo, A.D., González-Sanchis, M., Molina, A.J., García-Prats, A., Ceacero, C.J., Bautista, I., 2019b. Effectiveness of water-oriented thinning in two semiarid forests: the redistribution of increased net rainfall into soil water, drainage and runoff. Forest Ecology and Management, 438: 163–175. https://doi.org/10.1016/j.foreco.2019.02.02010.1016/j.foreco.2019.02.020Search in Google Scholar

Díaz-Maroto, I.J., Vila-Lameiro, P., 2008. Pedunculate oak (Quercus robur L.) silviculture in natural stands of NW Spain: environmental conditioners. Forest Ecology and Management, 256 (4): 702–711. https://doi.org/10.1016/j.foreco.2008.05.02310.1016/j.foreco.2008.05.023Search in Google Scholar

Fiquepron, J., Garcia, S., Stenger, A., 2013. Land use impact on water quality: valuing forest services in terms of the water supply sector. Journal of Environmental Management, 126: 113–121. https://doi.org/10.1016/j.jenvman.2013.04.00210.1016/j.jenvman.2013.04.00223681358Search in Google Scholar

Granger, J.J., Buckley, D.S., Sharik, T.L., Zobel, J.M., DeBord, W.W., Hartman, J.P., Henning, J.G., Keyser, T.L., Marshall, J.M., 2018. Northern red oak regeneration: 25-year results of cutting and prescribed fire in Michigan oak and pine stands. Forest Ecology and Management, 429: 467–479. https://doi.org/10.1016/j.foreco.2018.06.00310.1016/j.foreco.2018.06.003Search in Google Scholar

Guillon, S., Thorel, M., Flipo, N., Oursel, B., Claret, C., Fayolle, S., Bertrand, C., Rapple, B., Piegay, H., Olivier, J.-M., Vienney, A., Marmonier, P., Franquet, E., 2019. Functional classification of artificial alluvial ponds driven by connectivity with the river: consequences for restoration. Ecological Engineering, 127: 394–403. https://doi.org/10.1016/j.ecoleng.2018.12.01810.1016/j.ecoleng.2018.12.018Search in Google Scholar

Härkönen, S., Neumann, M., Mues, V., Berninger, F., Bronisz, K., Cardellini, G., Chirici, G., Hasenauer, H., Koehl, M., Lang, M., Merganicova, K., Mohren, F., Moiseyev, A., Moreno, A., Mura, M., Muys, B., Olschofsky, K., Del Perugia, B., Rørstad, P.K., Solberg, B., Thivolle-Cazat, A., Trotsiuk, V., Mäkelä, A., 2019. A climate-sensitive forest model for assessing impacts of forest management in Europe. Environmental Modelling & Software, 115: 128–143. https://doi.org/10.1016/j.envsoft.2019.02.00910.1016/j.envsoft.2019.02.009Search in Google Scholar

Holovach, R.V., 2010. Sanitarnyi stan pryrodnykh dubovykh derevostaniv Livoberezhnoho Lisostepu [Sanitary condition of natural oak forest stands in the Left-bank Forest-Steppe]. Forestry and Forest Melioration, 117: 183–186.Search in Google Scholar

Holovach, R.V., Lunachevskyy, L.S., Kobets, O.V., 2013. Suchasnyyi stan derevostaniv duba zvychayinoho Livoberezhnoho Lisostepu Ukrayiny [Present state of pedunculated oak stands in Ukrainian Left-Bank Forest-Steppe]. In Proceedings of International scientific and practical Internet conference Nauka na sluzhbi silskoho hospodarstva. Ukraine, Mykolayiv, March 5, 2013.. Mykilayiv: Mykolayivska DSDS IZZ, p. 55–56.Search in Google Scholar

Ikauniece, S., Brūmelis, G., Kondratovičs, T., 2012. Naturalness of Quercus robur stands in Latvia, estimated by structure, species, and processes. Estonian Journal of Ecology, 61 (1): 64–81. https://doi.org/10.3176/eco.2012.1.0710.3176/eco.2012.1.07Search in Google Scholar

Langat, P.K., Kumar, L., Koech, R., 2019. Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology, 325: 92–102. https://doi.org/10.1016/j.geomorph.2018.10.00710.1016/j.geomorph.2018.10.007Search in Google Scholar

Lanzoni, S., Ferdousi, A., Tambroni, N., 2019. River banks and channel axis curvature: Effects on the longitudinal dispersion in alluvial rivers. Advances in Water Resources, 113: 55–72. https://doi.org/10.1016/j.advwatres.2017.10.03310.1016/j.advwatres.2017.10.033Search in Google Scholar

Lelli, C., Bruun, H.H., Chiarucci, A., Donati, D., Frascaroli, F., Fritz, Ö., Goldberg, I., Nascimbene, J., Tøttrup, A.P., Rahbek, C., Heilmann-Clausen, J., 2019. Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. Forest Ecology and Management, 432: 707–717. https://doi.org/10.1016/j.foreco.2018.09.05710.1016/j.foreco.2018.09.057Search in Google Scholar

Luce, C.H., Vose, J.M., Pederson, N., Campbell, J., Millar, C., Kormos, P., Woods, R., 2016. Contributing factors for drought in United States forest ecosystems under projected future climates and their uncertainty. Forest Ecology and Management, 380: 299–308. https://doi.org/10.1016/j.foreco.2016.05.02010.1016/j.foreco.2016.05.020Search in Google Scholar

Lunachevskyi, L.S., Lukyanets, V.A., Musiienko, S.I., 2015. Vplyv rubok dohlyadu riznoyi intensyvnosti na taksatsiyini pokaznyky dubovykh derevostaniv v umovakh svizhoho hrudu [Effect of thinning of different intensity on the taxation parameters of oak stands in fresh fertile conditions]. Forestry and Forest Melioration, 126: 66–73.Search in Google Scholar

Marchuk, YU.M., Mykhalkiv, V.M., Kuprina, N.P., Ihnatenko, V.A., 2000. Produktyvnist, struktura ta stan dubovykh tsenoziv v bahatykh umovakh Livoberezhnoho Lisostepu [Productivity, structure and condition of oak coenoses in the best quantities of the Left-bank Forest Steppe]. Scientific Herald of NULES of Ukraine. Series: Forestry, 25: 143–152.Search in Google Scholar

Meshkova, V.L., 2011. Dynamika sanitarnoho stanu dubovykh derevostaniv u Livoberezhnomu Lisostepu Ukrainy pislya provedennya lisohospodarskykh zakhodiv [Dynamics of sanitary condition of oak stands in the Left-bank Forest Steppe of Ukraine after forest management operations]. Forest Journal, 1: 28–32.Search in Google Scholar

Meshkova, V.L., Didenko, M.M., 2017. Vikova struktura ta zberezhenist pryrodnykh dubovykh derevostaniv Livoberezhnoho Lisostepu [Аge structure and survival of natural oak stands in the Left-bank Forest-Steppe]. The Bulletin of Kharkiv National Agrarian University. Series: Soil Science, Agricultural Chemistry, Agriculture, Forestry, and Soil Ecology, 1: 155–164.Search in Google Scholar

Mölder, A., Meyer, P., Nagel, R.-V., 2019. Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Quercus petraea) forests. Forest Ecology and Management, 437: 324–339. https://doi.org/10.1016/j.foreco.2019.01.00610.1016/j.foreco.2019.01.006Search in Google Scholar

Muhamed, H., Lingua, E., Maalouf, J.-P., Michalet, R., 2015. Shrub-oak seedling spatial associations change in response to the functional composition of neighbouring shrubs in coastal dune forest communities. Annals of Forest Science, 72 (2): 231–241. https://doi.org/10.1007/s13595-014-0419-810.1007/s13595-014-0419-8Search in Google Scholar

Ostapenko, B.F., Tkach, V.P., 2002. Lisova typolohiya [Forest typology]. Kharkiv: Pleyada. 204 р.Search in Google Scholar

Pasternak, P.S. (ed.), 1990. Spravochnik lesovoda [Forester’s reference]. Kyiv: Urozhay. 295 p.Search in Google Scholar

Pogrebnyak, P.S., 1955. Osnovy lesnoy tipologii. Izdanie 2-e [Basics of forest typology. Second edition]. Kyiv: Akademiya Nauk USSR. 456 p.Search in Google Scholar

Polyakov, M., Teeter, L., 2005. The influence of regulatory forest policy tools on biodiversity measures for forests in Ukraine. Forest Policy and Economics, 7 (6): 848–856. https://doi.org/10.1016/j.forpol.2004.04.00210.1016/j.forpol.2004.04.002Search in Google Scholar

Poryadok podilu lisiv na katehoriyi ta vydilennya osoblyvo zakhysnykh lisovykh dilyanok [The order of division of forests into the categories and defining particularly protective forest sites]. Cabinet of Ministers of Ukraine from 27.07.2007. No 733. [cit. 2020-01-13]. https://zakon.rada.gov.ua/laws/show/733-2007-%D0%BFSearch in Google Scholar

Rumiantsev, M., Lukyanets, V., Musienko, S., Mostepanyuk, A., Obolonyk, I., 2018. Main problems in natural seed regeneration of pedunculate oak (Quercus robur L.) stands in Ukraine. Forestry Studies, 69: 7–23. https://doi:10.2478/fsmu-2018-000810.2478/fsmu-2018-0008Search in Google Scholar

Santos, M.G.M., Hartley, A.J., Mountney, N.P., Peakall, J., Owen, A., Merino, E.R., Assine, M.L., 2019. Meandering rivers in modern desert basins: implications for channel planform controls and prevegetation rivers. Sedimentary Geology, 385: 1–14. https://doi.org/10.1016/j.sedgeo.2019.03.01110.1016/j.sedgeo.2019.03.011Search in Google Scholar

Shannon, P.D., Swanston, C.W., Janowiak, M.K., Handler, S.D., Schmitt, K.M., Brandt, L.A., Butler-Leopold, P.R., Ontl, T., 2019. Adaptation strategies and approaches for forested watersheds. Climate Services, 13: 51–64. https://doi.org/10.1016/j.cliser.2019.01.00510.1016/j.cliser.2019.01.005Search in Google Scholar

Sklyar, V.G., Dehtyaryov, V.M., 2013. Osoblyvosti pryrodnoho ponovlennya providnykh tsenozoutvoryuyuchykh vydiv v urochyshchi “Retytska dacha” [Features of natural regrowth of dominate forest tree species in the “Retitska Dacha” array]. Bulletin of Sumy NAU, 3 (25): 11–13.Search in Google Scholar

Solodovnyk, V.A., Horoshko, V.V., Shvachka, O.S., 2009. Analiz taksatsiinoyi budovy derevostaniv v mezhakh serednoyi techiyi richky Vorskla Sumskoyi oblasti [An analysis of the taxonomic structure of forest stands within the middle reaches of the Vorskla River in the Sumy region]. The Bulletin of Kharkiv National Agrarian University. Series: Soil Science, Agricultural Chemistry, Agriculture, Forestry and Soil Ecology, 2: 175–178.Search in Google Scholar

Stephan, J.M., Teeny, P.W., Vessella, F., Schirone, B., 2018. Oak morphological traits: between taxa and environmental variability. Flora, 243: 32–44. https://doi.org/10.1016/j.flora.2018.04.00110.1016/j.flora.2018.04.001Search in Google Scholar

Tkach, L.I., Bondar, O.B., Solodovnyk, V.A., 2016. Typolohichna struktura i bioriznomanittya lisiv malykh vodozboriv richky Vorskla [Typological structure and biodiversity of forests in small water catchment areas of the Vorskla river]. Scientific Herald of National University of Life and Environmental Sciences of Ukraine. Series: Forestry and Decorative Gardening, 238: 56–65.Search in Google Scholar

Tkach, V.P., Golovach, R.V., 2009. Suchasnyy stan pryrodnykh dubovykh derevostaniv v Livoberezhnomu Lisostepu Ukrayiny [Current condition of natural oak stands in the Left-bank Forest-Steppe of Ukraine]. Forestry and Forest Melioration, 116: 79–84.Search in Google Scholar

Upton, V., Ryan, M., O’Donoghue, C., Ni Dhubhain, A., 2015. Combining conventional and volunteered geographic information to identify and model forest recreational resources. Applied Geography, 60: 69–76. https://doi.org/10.1016/j.apgeog.2015.03.00710.1016/j.apgeog.2015.03.007Search in Google Scholar

Vanhellemont, M., Sousa-Silva, R., Maes, S.L., Vanden Bulcke, J., Hertzog, L., De Groote, S.R.E., Van Acker, J., Bonte, D., Martel, A., Lens, L., Verheyen, K., 2019. Distinct growth responses to drought for oak and beech in temperate mixed forests. Science of The Total Environment, 650 (2): 3017–3026. https://doi.org/10.1016/j.scitotenv.2018.10.05410.1016/j.scitotenv.2018.10.05430373078Search in Google Scholar

Vedmid, M.M., Meshkova, V.L., Zhezhkun, A.M., 2006. Alhorytm dlya vyyavlennya dilyanok malotsinnykh molodnyakiv u dibrovakh za materialamy lisovporyadkuvannya [Algorithm for reveal of low valuable young stands in the oakeries by forest inventory data]. Forestry and Forest Melioration, 110: 54–58.Search in Google Scholar

Vizoso-Arribe, O., Díaz-Maroto, I., Vila-Lameiro, P., Díaz-Maroto, M., 2014. Influence of the canopy in the natural regeneration of Quercus robur in NW Spain. Biologia, 69 (12): 1678–1684. https://doi.org/10.2478/s11756-014-0481-610.2478/s11756-014-0481-6Search in Google Scholar

Wiśniewski, P., Märker, M., 2019. The role of soil-protecting forests in reducing soil erosion in young glacial landscapes of Northern-Central Poland. Geoderma, 337: 1227–1235. https://doi.org/10.1016/j.geoderma.2018.11.03510.1016/j.geoderma.2018.11.035Search in Google Scholar

Woziwoda, B., Dyderski, M.K., Kobus, S., Parzych, A., Jagodziński, A.M., 2019. Natural regeneration and recruitment of native Quercus robur and introduced Q. rubra in European oak-pine mixed forests. Forest Ecology and Management, 449: 117–126. https://doi.org/10.1016/j.foreco.2019.11747310.1016/j.foreco.2019.117473Search in Google Scholar

Zhao, J., Yang, Z., Govers, G., 2019. Soil and water conservation measures reduce soil and water losses in China but not down to background levels: evidence from erosion plot data. Geoderma, 337: 729–741. https://doi.org/10.1016/j.geoderma.2018.10.02310.1016/j.geoderma.2018.10.023Search in Google Scholar

eISSN:
1338-7014
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Plant Science, Zoology, Ecology