Cite

Anand, M., Tucker, B.C., Desrochers, R., 2002. Ecological monitoring of terrestrial ecosystem recovery from man-made perturbation: assessing community complexity. In Proceedings of the 10th International conference on modelling, monitoring and management of air pollution. Segovia, Spain, July 1–3, 2002. Southampton: WIT Press, p. 341–350.Search in Google Scholar

Bajla, B.C., Minarik, J., 2003. Návrh metódy namerania okamžitej vlhkosti pôdy pri hrote penetrometra [Proposal of a method for measuring the instantaneous moisture content in soil proximate to the tip of penetrometer]. Acta Technologica Agriculturae, 6 (4): 93–96.Search in Google Scholar

Baroni, G., Ortuani, B., Facchi, A., Gandolfi, C., 2013. The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field. Journal of Hydrology, 489: 148–159.10.1016/j.jhydrol.2013.03.007Search in Google Scholar

Baveye, P.C., Laba, M., 2015. Moving away from the geostatistical lamppost: why, where, and how does the spatial heterogeneity of soils matter? Ecological Modelling, 298: 24–38.10.1016/j.ecolmodel.2014.03.018Search in Google Scholar

Bolenius, E., Bölenius, E., Rogstrand, G., Thylén L., 2006. On-the-go measurements of soil penetration resistance on a Swedish EutricCambisol. In Proceedings of the International Soil Tillage Research Organisation (ISTRO), 17th Triennial conference. Kiel, Germany, August 28–September 3, 2006. Kiel: ISTRO, p. 867–870.Search in Google Scholar

Breemen, N., Finzi, A.C., 1998. Plant-soil interactions: ecological aspects and evolutionary implications. Biogeochemistry, 42: 1–19.10.1007/978-94-017-2691-7_1Search in Google Scholar

Brind’Amour, A., Boisclair, D., Dray, S., Legendre, P., 2011. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach. Ecological Applications, 21 (2): 363–377.10.1890/09-2178.1Search in Google Scholar

Bussoher, W.J., Frederick, J.R., Baner, B.J., 2000. Timing effects of deep tillage on penetration resistance and wheat and soybean yield. Soil Science Society of America Journal, 64 (3): 999–1003.10.2136/sssaj2000.643999xSearch in Google Scholar

Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., 1994. Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58: 1501–1511.10.2136/sssaj1994.03615995005800050033xSearch in Google Scholar

Castrignano, A.D., De Giorgio, Fornaro, F, Vonella, A.V., 2004. 3D spatial variation of the soil impedance as affected by soil tillage. In Conserving soil and water for society: sharing solutions. Proceedings the 13th International Soil Conservation Organisation Conference. Brisbane, 4–9th July. Paper no 744, 5p.Search in Google Scholar

Cecilia, M., Jesus, H. C., Cortes, C.A., 2012. Soil penetration resistance analysis by multivariate and geostatistical methods. Engenharia Agricola, Jaboticabal, 32: 91–101.10.1590/S0100-69162012000100010Search in Google Scholar

Demidov, A.A., Kobets, A.S., Gritsan, Y.I., Zukov, A.V., 2013. Prostranstvennaya agroekologiya i rekultivatsiya zemel [Spatial agroecology and land reclamation: monograph]. Dnepropetrovsk: Svidler A.L. 560 p.Search in Google Scholar

Diacono, M., Benedetto, D., Castrignanò, А., Rubinoa, Р., Vitti, С., Abdelrahman, Н.М., Sollitto, D., Cocozza, C., Ventrella, D., 2013. A combined approach of geostatistics and geographical clustering for delineating homogeneous zones in a durum wheat field in organic farming. NJAS – Wageningen Journal of Life Sciences, 64–65: 47–57.10.1016/j.njas.2013.03.001Search in Google Scholar

Didukh,Ya.P., 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre. 176 p.Search in Google Scholar

Didukh, Ya.P., 2012. Osnovy bioindykatsii [Fundamentals of bioindication]. Kyiv: Naukova dumka. 344 p.Search in Google Scholar

Dray, S., Legendre, P., Peres-Neto, P., 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecological Modelling, 196: 483–493.10.1016/j.ecolmodel.2006.02.015Search in Google Scholar

Grunwald, S., McSweeney, K., Rooney, D.J., Lowery B., 2001. Soil layer models created with profile cone penetrometer data. Geoderma, 1103 (1–2): 181–201.10.1016/S0016-7061(01)00076-3Search in Google Scholar

Hamza, M.A., Anderson, W.K., 2001. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Research, 82 (2): 121–145.10.1016/j.still.2004.08.009Search in Google Scholar

Herrick, J.E., Jones, T.L., 2002. A dynamic cone penetrometer for measuring soil penetration resistance. Soil Science Society of America Journal, 66: 1320–1324.10.2136/sssaj2002.1320Search in Google Scholar

Heuvelink, G.B.M., Webster, R., 2001. Modelling soil variation: past, present, and future. Geoderma, 100: 269–301.10.1016/S0016-7061(01)00025-8Search in Google Scholar

Jiménez Juan, J., Decaëns, T., Lavelle, P., Rossi, J., 2014. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecology, 14: 26–45.10.1186/s12898-014-0026-4Search in Google Scholar

Kremer, A.M., 1970. Neodnorodnosti pochvennogo pokrova kak samoorganizuyushchiesya sistemy [The heterogeneity of the soil cover as self-organizing systems]. In Zakonomernosti prostranstvennogo varirovaniya svoystv pochv i informatsionno-statisticheskie metody ih izucheniya. Moskva, p. 68–80.Search in Google Scholar

Legendre, P., Fortin, M.J., 1989. Spatial pattern and ecological analysis. Vegetatio, 80: 107–138.10.1007/BF00048036Search in Google Scholar

Lipies, J., Hatano, H., 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 116 (1–2): 107–136.10.1016/S0016-7061(03)00097-1Search in Google Scholar

Lowery, B., Morrison, J.E., 2002. Soil penetrometers and penetrability. In Methods of soil analysis. Part 4, Physical methods. Soil Science Society of America book series, 5. Madison: Soil Science Society of America, p. 363–388.Search in Google Scholar

Matveev, N.M., 2003. Optimizatsiya sistemyi ekomorf rasteniy A.L. Belgarda v tselyah indikatsii ekotopa i biotopa [Optimization of the system of plant ecomorphs Bel’gard for the purpose of indicating the ecotope and biotope]. Visnyk of Dnipropetrovsk University: Biology, Ecology, 11 (2): 105–113.Search in Google Scholar

Medvedev, V.V., 2010. Neodnorodnost kak zakonomernoe proyavlenie gorizontalnoy strukturyi pochvennogo pokrova [Heterogeneity as natural display of horizontal structure of a soil cover]. Gruntoznavstvo, 11 (1–2): 6–15.10.1109/JDT.2010.2093713Search in Google Scholar

Mouillot, D., Spatharis, S., Reizopoulou, S. T., Laugier, L., Sabetta, A., Basset, T., Do Chi., T., 2006. Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquatic Conservation: Marine and Freshwater Ecosystems, 16: 469–482.10.1002/aqc.769Search in Google Scholar

Nazarenko, N.N., 2016. Tsenomorfyi kak fitoindikatoryi biotopov [Coenomorphs as phytometers of biotopes]. Visnyk of Dnipropetrovsk University: Biology, Ecology, 24 (1): 8–14.10.15421/011602Search in Google Scholar

Paračkova, A. Zaujec, A., 2001. Evaluation of human impacts on soils on the Borska lowland. Ekológia (Bratislava), 20 (3): 299–304.Search in Google Scholar

Polláková, N., Šimanský, V., Jonczak, J., 2017. Characteristics of physical properties in soil profiles under selected introduced trees in the Nature Reserve Arboretum Mlyňany, Slovakia. Folia Oecologica, 44: 78–86.10.1515/foecol-2017-0010Search in Google Scholar

Rad, J.E, Valadi, G., Zargaran, M.R., 2017. Effect of man-made disturbances on understory plant richness of oak forests in Iran. Folia Oecologica, 44: 61–68.10.1515/foecol-2017-0008Search in Google Scholar

Rode, A.A., 1984. Genezis pochv i sovremennyie protsessyi pochvoobrazovaniya [Genesis of soils and modern soil formation processes]. Moskva: Nauka. 256 p.Search in Google Scholar

Tarasov, V.V., 2005. Flora Dnipropetrovskoi i Zaporizkoi oblastei [Flora of the Dnipropetrovsk and Zaporizhia regions]. Lira: DNU. 276 p.Search in Google Scholar

Tužinský, L., Bublinec, E., Tužinský, M., 2017. Development of soil water regime under spruce stands. Folia Oecologica, 44: 46–53.10.1515/foecol-2017-0006Search in Google Scholar

Topp, G.C., Lapena, D.R., Edwards, M.J., Young, G.D., 2003. Laboratory calibration, in-field validation and use of a soil penetrometer measuring cone resistance and water content. Vadose Zone, 2: 633–641.10.2136/vzj2003.6330Search in Google Scholar

Travleev, A.P., Belova, N.A. Balalayev, A.K., 2008. Ekologiya pochvoobrazovaniya lesnyih chernozemov [Ecology of the forest chernozems formation]. Gruntiznavstvo, 9 (1–2): 19–29.Search in Google Scholar

Vachel, J., Ehrlich, P., 1988. Využití penetrometrické metody měrení pevnosti zemin v průzkumech pro odvodnění [Using penetrometry in assessment of soil resistance in surveys performed for draining purposes]. Vědecké práce Výzkumného ústavu pro zúrodnění zemědělských půd, 5: 131–140.Search in Google Scholar

Valbuena Calderon, C.A., Martines, L.J., Giraldo Henao, R., 2008. Variabilidad especial del suelo y surelacion con el rendimiento de mango (Mangifera indica L.) [Spatial variability of soil properties and yield relationship in a mango crop (Mangifera indica L.)]. Revista Brasileira de Fruticultura, Jaboticabal, 30 (4): 1146–1151.10.1590/S0100-29452008000400049Search in Google Scholar

Vanags, C., Minasny, В., McBratney, A.B., 2004. The dynamic penetrometer for assessment of soil mechanical resistance. In Supersoil 2004. Proceeding of the 3th Australian New Zealand Conference. [cit. 2017-9-12]. http://www.regional.org.au/au/asssi/supersoil2004/s14/poster/1565_vanagsc.htm.Search in Google Scholar

Verones Junior, V., Carvalho, M.P., Dafonte, J., Freddi, O.S., Vidal Vazquez, E. Ingaramo, O.E., 2006. Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil and Tillage Research, 85 (1–2): 166–177.10.1016/j.still.2005.01.018Search in Google Scholar

Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientist. Chichester: John Wiley & Sons. 318 р.10.1002/9780470517277Search in Google Scholar

Yeterevska, L.V., Stammerer, G.F., Kanash A.P., 2008. Rekultyvovani grunty pidkhody do klasyfikatsii i systematyky [Recultivated soils approaches to classification and taxonomy]. Gruntiznavstvo, 9 (3–4): 147–150 p.Search in Google Scholar

Young, G.D., Adams, B.A., Topp, G.C., 2000. A portable data collection system for simultaneous cone penetrometer force and volumetric soil water content measurements. Journal of Soil Science, 80: 23–31.10.4141/S99-025Search in Google Scholar

Zadorozhna, G.O., 2017. Soil ecomorphs as form of adaptation to the conditions of biogeocenosis. Scientific Bulletin Eastern National University named after Lesya Ukrainian. Series: Biological Sciences, 17 (342): 94–102.10.29038/2617-4723-2017-356-7-94-103Search in Google Scholar

Zahradniček, J., Beran, P., Pulkrabek, J., Svachula, B., Faměra, O., Sroller, J., Chochola, J., 2001. The effect of physical soil properties on metabolism and technological quality of sugar beet. Rostlinná Výroba, 47 (1): 23–27.Search in Google Scholar

Zhukov, A., Zadorozhnaya, G., 2016. Spatial heterogeneity of mechanical impedance of atypical chernozem: the ecological aproach. Ekológia (Bratislava), 35 (3): 263–278.10.1515/eko-2016-0021Search in Google Scholar

Zhukov, A.O., Zadorozhna, G.O., Maslikova, K.P., Andrusevich, K.V., Lyadska, I.V., 2017. Ekolohiya tekhnozemiv [Ecology of technosems]. Dnepr: Zhurfond. 444 p.Search in Google Scholar

Zhukov, A.V., 2015. Fitoindykatsiine otsiniuvannia vymiriv, oderzhanykh za dopomohoiu bahatovymirnoho shkaliuvannia struktury roslynnoho uhrupovannia [Phytoindicative estimation of measurements obtained with multidimensional scaling of the plant community structure]. Chornomorskyi Botanichnyi Zhurnal, 1 (11): 84–95.10.14255/2308-9628/15.111/8Search in Google Scholar

Zhukov, A.V., Zadorojhna, G.O., Lyadskaya, I.V., 2014. Fizychni vlastyvosti rekultozemiv Nikopolskoho marhantsevorudnoho basseinu [Physical properties of the rekultozems of the Nikopolsky manganese-ore basin]. Pytannia Stepovoho Lisoznavstva ta Lisovoi Rekultyvatsii Zemel, 43: 93–102.Search in Google Scholar

Zhukov, A.V., Zadorozhna, G.A., 2016. Prostranstvenno-vremennaya dinamika tverdosti rekultivirovannyih pochv, sformirovannyih v rezultate dobyichi poleznyih iskopaemyih otkryityim sposobom [Spatio-temporal dynamics of the recultivated soils penetration resistance formed after open mining]. Visnyk of Dnipropetrovsk University: Biology, Ecology, 24 (2): 324–331.10.15421/011642Search in Google Scholar

Zhukov, А.V., Zadorozhnaya, G.A., 2015. Otsenka ecomorphogenesa pedozema y chernozema obyknovennoho na osnove pokazatelei tverdosty [Pedozem and chernozem ecomorphogenesis assessment by soil penetration resistance data]. Ahrokhimiya i Gruntoznavstvo, 84: 72–80.Search in Google Scholar

Zhukov, A.V., Zadorozhnaya, G.A., Andrusevich, K.V., 2012. Ekolohicheskiie kharakteristiki pedonov diernovo-litohiennykh pochv na lesakh [Ecological characteristics of the pedons of soddy-lithogenic soils on loess]. Visnyk DDAU, 2: 9–11.Search in Google Scholar

Zhukov, O.V., Kunah, O.M., 2011. Tverdost dernovo-litogennyih pochv na lessovidnyih suglinkah [Penetration resistance of sod-lithogenic soils on loesslike loams]. Visnyk DDAU, 1: 63–69.Search in Google Scholar

eISSN:
1338-7014
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Plant Science, Zoology, Ecology