Cite

Abadía J., Abadía A., 1993. Iron and pigments. In: Iron Chelation in Plants and Soil Microorganisms. L.L. Barton and B.C. Hemming (Eds), Academic Press, San Diego, USA, 327-343.10.1016/B978-0-12-079870-4.50020-XSearch in Google Scholar

Álvarez-Fernández A., Melgar J.C, Abadía J., Abadía A., 2011. Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica (L.) Batsch). Environ. Exper. Bot. 71, 280-286.10.1016/j.envexpbot.2010.12.012Search in Google Scholar

Berlyn G.P., Miksche J.P., 1976. Botanical Microtechnique and Cytochemistry. Ames Iowa: Iowa State University Press, USA.10.2307/2418781Search in Google Scholar

Bienfait H.F., Bino R.J., van der Blick A.M., Duivenvoorden J.F., Fontaine J.M., 1983. Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol. Plant. 59, 196-202.10.1111/j.1399-3054.1983.tb00757.xSearch in Google Scholar

Boamponsem G.A., Leung D.W.M., Lister C., 2017. Insights into resistance to Fe deficiency stress from a comparative study of in vitro-selected novel Fe-efficient and Fe-inefficient potato plants. Front. Plant Sci. 8, 1581.10.3389/fpls.2017.01581560141528955367Search in Google Scholar

Correia P.J., Pestana M., Martins-Loução M.A., 2003. Nutrient deficiencies in carob (Ceratonia siliqua L.) grown in solution culture. J. Hortic. Sci. Biotechnol. 78, 847-852.10.1080/14620316.2003.11511708Search in Google Scholar

Dasgan H.Y., Römheld V., Cakmak I., Abak K., 2002. Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F1 hybrids. Plant Soil 241, 97-104.10.1023/A:1016060710288Search in Google Scholar

Giehl R.F.H., Lima J.E., von Wirén N., 2012. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 24, 33-49.10.1105/tpc.111.092973328957822234997Search in Google Scholar

Graças J.P., Ruiz-Romero R., Figueiredo L.D., Mattiello L., Peres, L.E.P., Vitorello V.A., 2016. Root growth restraint can be an acclimatory response to low pH and is associated with reduced cell mortality: a possible role of class III peroxidases and NADPH oxidases. Plant Biol. 18, 658-668.10.1111/plb.1244326891589Search in Google Scholar

Guerinot M.L., Yi Y., 1994. Iron: nutritious, noxious, and not readily available. Plant Physiol. 104, 815-820.10.1104/pp.104.3.81516067712232127Search in Google Scholar

Hindt M.N., Guerinot M.L., 2012. Getting a sense for signals: regulation of the plant iron deficiency response. Biochim. Biophys. Acta 1823, 1521-1530.10.1016/j.bbamcr.2012.03.010Search in Google Scholar

Jin C.W., Du S.T., Shamsi I.H., Luo B.F., Lin X.Y., 2011. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J. Exp. Bot. 62, 3875-3884.10.1093/jxb/err078Search in Google Scholar

Kawahara Y., Kitamura Y., 2015. Changes in cell size and number and in rhizodermal development contribute to root tip swelling of Hyoscyamus albus roots subjected to iron deficiency. Plant Physiol. Biochem. 89, 107-111.10.1016/j.plaphy.2015.02.018Search in Google Scholar

Kobayashi T., Nishizawa N.K., 2014. Iron sensors and signals in response to iron deficiency. Plant Sci. 224, 36-43.10.1016/j.plantsci.2014.04.002Search in Google Scholar

Landsberg E-C., 1995. Transfer cells formation in sugar beet roots induced by latent Fe deficiency. In: Iron Nutrition in Soils and Plants. J. Abadía. (Ed.), Springer, Dordrecht, Netherlands, 67-75.10.1007/978-94-011-0503-3_10Search in Google Scholar

Li Z., Phillip D., Neuhäuser B., Schulze W.X., Ludewig U., 2015. Protein dynamics in young maize root hairs in response to macro and micronutrient deprivation. J. Proteome Res. 14, 3362-3371.10.1021/acs.jproteome.5b00399Search in Google Scholar

Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382.10.1016/0076-6879(87)48036-1Search in Google Scholar

Lucena C., Romera F.J., García M.J., Alcántara E., Pérez-Vicente R., 2015. Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice. Front. Plant Sci. 6, 1-16.10.3389/fpls.2015.01056466123626640474Search in Google Scholar

Morales F., Abadía A., Abadía J., 1990. Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol. 94, 607-613.10.1104/pp.94.2.607107727516667755Search in Google Scholar

Paolacci A.R., Celletti S., Catarcione G., Hawkesford M.J., Astolfi S., Ciaffi M., 2014. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings. J. Int. Plant Biol. 56, 88-100.10.1111/jipb.1211024119307Search in Google Scholar

Pestana M., Correia P.J., Saavedra T., Gama F., Abadía A., de Varennes A., 2012. Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. Plant Physiol. Biochem. 53, 1-5.10.1016/j.plaphy.2012.01.00122285409Search in Google Scholar

Pestana M., David M., de Varennes A., Abadía J., Faria E.A., 2001. Responses of ‘Newhall’ orange trees to iron deficiency in hydroponics: effects on leaf chlorophyll, photosynthetic efficiency and root ferric chelate reductase activity. J. Plant Nutr. 24, 1609-1620.10.1081/PLN-100106024Search in Google Scholar

Pestana M., Faria E.A., De Varennes A., 2004. Lime-induced iron chlorosis in fruit trees. In: Production Practices and Quality Assessment of Food Crops. R. Dris and S.M. Jain (Eds), Springer, Dordrecht, Netherlands, 171-215.10.1007/1-4020-2536-X_7Search in Google Scholar

Romera F.J., Alcántara E., 2004. Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy I plants. Funct. Plant Biol. 31, 315-328.10.1071/FP0316532688902Search in Google Scholar

Römheld V., Marschner H., 1986. Mobilization of iron in the rhizosphere of different plant species. Adv. Plant Nutr. 2, 155-204.Search in Google Scholar

Santi S., Schmidt W., 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 183, 1072-1084.10.1111/j.1469-8137.2009.02908.x19549134Search in Google Scholar

Schmidt W., 1999. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 141, 1-26.10.1046/j.1469-8137.1999.00331.xSearch in Google Scholar

Sun H., Feng F., Liu J., Zhao Q., 2017. The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice. Front. Plant Sci. 8, 2169.10.3389/fpls.2017.02169574367929312409Search in Google Scholar

Von Wirén N., Bennett M.J., 2016. Crosstalk between gibberellin signalling and iron uptake in plants: an Achilles’ Heel for modern cereal varieries? Dev. Cell 37, 110-111.10.1016/j.devcel.2016.04.00327093079Search in Google Scholar

Wu T., Zhang H-T., Wang Y., Jia W-S., Xu X-F., Zhang X-Z., et al., 2012. Induction of root Fe (III) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J. Exp. Bot. 63, 859-870.10.1093/jxb/err314325468622058407Search in Google Scholar

Zuchi S., Cesco S., Gottardi S., Pinton R., Römheld V., Astolfi S., 2011. The rot-hairless barley mutant brb used as model for assessment of role of root hairs in iron accumulation. Plant Physiol. Biochem. 49, 506-512.10.1016/j.plaphy.2010.12.00521236691Search in Google Scholar

Zuchi S., Cesco S., Varanini Z., Pinton R., Astolfi S., 2009. Sulphur deprivation limits Fe-deficiency responses in tomato plants. Planta 230, 85-94.10.1007/s00425-009-0919-119350269Search in Google Scholar

eISSN:
2083-5965
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, Ecology, other