Cite

Banerjee A., Roychoudhury A., 2018. Role of beneficial trace elements in salt stress tolerance of plants. In: Plant Nutrients and Abiotic Stress Tolerance. M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar and B. Hawrylak-Nowak (Eds), Springer, Singapore, 377-390.10.1007/978-981-10-9044-8_16Search in Google Scholar

Bates L., Waldren R., Teare J., 1973. Rapid determination of free proline for water stress studies. Plant Soil 39, 205-207.10.1007/BF00018060Search in Google Scholar

Bosnic P., Bosnic D., Jasnic J., Nikolic M., 2018. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ. Exp. Bot. 155, 681-687.10.1016/j.envexpbot.2018.08.018Search in Google Scholar

Cassaniti C., Romano D., Flowers T.J., 2012. The response of ornamental plants to saline irrigation water. In: Irrigation – Water Management, Pollution and Alternative Strategies. I. Garcia-Garizabal (Ed.), IntechOpen, London, UK, 131-158.10.5772/31787Search in Google Scholar

Cunningham M.A., Snyder E., Yonkin D., Ross M., Elsen T., 2008. Accumulation of deicing salts in soils in an urban environment. Urban Ecosyst. 11, 1-31.10.1007/s11252-007-0031-xSearch in Google Scholar

Diao M., Ma L., Wang J., Cui J., Fu A., Liu H., 2014. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defence system. J. Plant Growth Regul. 33, 671-682.10.1007/s00344-014-9416-2Search in Google Scholar

Elkhatib H.A., Elkhatib E.A., Allah A.M.K., El-Sharkawy A.M., 2004. Yield response of salt stressed potato to potassium fer tilization: a preliminary mathematical model. J. Plant Nutr. 27, 111-122.10.1081/PLN-120027550Search in Google Scholar

Eryilmaz F., 2006. The relationships between salt stress and anthocyanin content in higher plants. Biotechnol. Biotec. Eq. 20, 47-52.10.1080/13102818.2006.10817303Search in Google Scholar

Hawrylak-Nowak B., 2008. Changes in anthocyanin content as indicator of maize sensitivity to selenium. J. Plant Nutr. 31, 1232-1242.10.1080/01904160802134962Search in Google Scholar

Hawrylak-Nowak B., 2009. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res. 132, 259-269.10.1007/s12011-009-8402-119434374Search in Google Scholar

Hawrylak-Nowak B., 2015. Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biol. Cracov., Ser. Bot. 57, 49-54.10.1515/abcsb-2015-0023Search in Google Scholar

Hawrylak-Nowak B., Hasanuzzaman M., Matraszek -Gawron R., 2018. Mechanisms of selenium-induced enhancement of abiotic stress tolerance in plants. In: Plant Nutrients and Abiotic Stress Tolerance. M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar and B. Hawrylak-Nowak (Eds), Springer, Singapore, 269-295.10.1007/978-981-10-9044-8_12Search in Google Scholar

Ibrahim K.M., Collins J.C., Collin H.A., 1992. Characterization of progeny of Coleus blumei following an in vitro selection for salt tolerance. Plant Cell Tissue Organ Cult. 28, 139-145.10.1007/BF00055508Search in Google Scholar

Jiang C., Zu C., Lu D., Zheng Q., Shen J., Wang H., et al., (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci. Rep. 7, 42039.10.1038/srep42039529458628169318Search in Google Scholar

Khan M.I.R., Nazir F., Asgher M., Per T.S., Khan N.A., 2015. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 173, 9-18.10.1016/j.jplph.2014.09.01125462073Search in Google Scholar

Kong L., Wang M., Bi D., 2005. Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul. 45, 155-163.10.1007/s10725-005-1893-7Search in Google Scholar

Kovinich N., Kayanja G., Chanoca A., Otegui M.S., Grotewold E., 2015. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. 10, 7.10.1080/15592324.2015.1027850462262326179363Search in Google Scholar

Leyva R., Sánchez-Rodríguez E., Ríos J.J., Rubio-Wilhelmi M.M., Romero L., Ruiz J.M., et al., 2011. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci. 181, 195-202.10.1016/j.plantsci.2011.05.00721683885Search in Google Scholar

Lichtenthaler H.K., Wellburn A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603, 591-592.10.1042/bst0110591Search in Google Scholar

Matraszek R., Hawrylak-Nowak B., Chwil M., 2015. Protein hydrolysate as a component of salinized soil in the cultivation of Ageratum houstonianum Mill. (Asteraceae). Acta Agrobot. 68, 247-253.10.5586/aa.2015.028Search in Google Scholar

Munns R., Tester M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651 681.10.1146/annurev.arplant.59.032607.09291118444910Search in Google Scholar

Murchie E.H., Lawson T., 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983-3998.10.1093/jxb/ert20823913954Search in Google Scholar

Negrão S., Schmöckel S.M., Tester M., 2017. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119, 1-11.10.1093/aob/mcw191521837227707746Search in Google Scholar

Ramoliya P.J., Patel H.M., Pandey A.N., 2004. Effect of salinisation of soil on growth and macro- and micro-nutrient accumulation in seedlings of Acacia catechu (Mimosaceae). Ann. Appl. Biol. 144, 321-332.10.1111/j.1744-7348.2004.tb00347.xSearch in Google Scholar

Santos C.C., 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 103, 93-99.10.1016/j.scienta.2004.04.009Search in Google Scholar

Shahzad M., Zörb C., Geilfus C.M., Mühling K.H., 2013. Apoplastic Na+ in Vicia faba leaves rises after short-term salt stress and is remedied by silicon. J. Agron. Crop Sci. 199, 161-170.10.1111/jac.12003Search in Google Scholar

Stirbet A., Lazár D., Kromdijk J., Govindjee, 2018. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56, 86-104.10.1007/s11099-018-0770-3Search in Google Scholar

Sudhir P., Murthy S.D.S., 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42, 481-486.10.1007/S11099-005-0001-6Search in Google Scholar

Wahid A., Ghazanfar A., 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol. 163, 723-730.10.1016/j.jplph.2005.07.00716616583Search in Google Scholar

Wang Y., Li K., Li X., 2009. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 166, 1637-1645.10.1016/j.jplph.2009.04.00919457582Search in Google Scholar

White P.J., 2018. Selenium metabolism in plants. Biochim. Biophys. Acta Gen. Subj. 1862, 2333-2342.10.1016/j.bbagen.2018.05.006Search in Google Scholar

Wrochna M., Gawroński S.W., 2004. Ocena przydatności roślin ozdobnych z rodziny komosowatych i szarłatowatych do uprawy na stanowiskach zasolonych [Evaluation of the usefulness of ornamental plants from the family Chenopodiaceae and Amaranthaceae for cultivation in saline areas]. Roczn. AR w Poznaniu, CCCLVI, Ogrodnictwo 37, 233-238 [in Polish].Search in Google Scholar

Zhu J.K., 2001. Plant salt tolerance. Trends Plant Sci. 6, 66-71.10.1016/S1360-1385(00)01838-0Search in Google Scholar

eISSN:
2083-5965
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, Ecology, other