Open Access

Use of biocides for controlling viral diseases that attack common bean and cucumber plants


Cite

Abdel-Shafi S., 2013. Preliminary studies on antibacterial and antiviral activities of five medicinal plants. J. Plant. Pathol. Microb. 4, 190.Search in Google Scholar

Abo-El Seoud M.A., Sarhan M.M., Omar A.E., Helal M.M., 2005. Biocides formulation of essential oils having antimicrobial activity. Arch. Phytopathol. Plant Protect. 38(3), 175-184.10.1080/03235400500094340Search in Google Scholar

Anuradha C., Selvarajan R., Vasantha S., Suresha G.S., 2015. Biochemical characterization of compatible plant virus interaction: A case study with bunchy top virus-banana host-pathosystem. Plant Pathol. J. 14(4), 212-222.10.3923/ppj.2015.212.222Search in Google Scholar

Balachandran S., Hurry V.M., Kelley S.E., Osmond C.B., Robinson S.A., Rohozinski J., et al., 1997. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol. Plant. 100, 203-213.10.1034/j.1399-3054.1997.1000201.xSearch in Google Scholar

Biles C.L., Martyn R.D., 1993. Peroxidase, polyphenoloxidase, and shikimate dehydrogenase isozymes in relation to the tissue type, maturity and pathogen induction of watermelon seedlings. Plant Physiol. Biochem. 31, 499-506.Search in Google Scholar

Bishop C.D., 1995. Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden and Betche) Cheel (tea tree) against Tobacco mosaic virus. J. Essent. Oil Res. 7, 641-644.10.1080/10412905.1995.9700519Search in Google Scholar

Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.10.1016/0003-2697(76)90527-3Search in Google Scholar

Campos-Vargas R., Saltveit M.E., 2002. Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol. Plant. 114, 73-84.10.1034/j.1399-3054.2002.1140111.x11982937Search in Google Scholar

Chen J., Yan X.-H., Dong J.-H., Sang P., Fang X., Di Y.-T., et al., 2009. Tobacco mosaic virus (TMV) inhibitors from Picrasma quassioides Benn. J. Agric. Food Chem. 57, 6590-6595.10.1021/jf901632j19586051Search in Google Scholar

Dunkić V., Vuko E., Bezić N., Kremer D., Ruscić M., 2013. Composition and antiviral activity of the essential oils of Eryngium alpinum and E. amethystinum. Chem. Biodivers. 10, 1894-1902.10.1002/cbdv.20130006124130032Search in Google Scholar

Edwardson J.R., Christie R.G., 1991. Cucumoviruses. In: Handbook of Viruses Infecting Legumes. J.R. Edwardson (Ed.), CRC Press, Boca Raton, USA, 294-303.Search in Google Scholar

Elsharkawy M.M., El-Sawy M.M., 2015. Control of Bean common mosaic virus by plant extracts in bean plants. Int. J. Pest Manage. 61(1), 54-59.10.1080/09670874.2014.990947Search in Google Scholar

El-Shazly M.A., Abd El-Wahab A.S., 2017. Effect of jojoba seed extract and riboflavin in preventing the transmission of Iris yellow spot virus (IYSV): Tospovirus by Thrips tabaci L. to onion plants in Egypt. Int. J. Virol. 13, 14-28.10.3923/ijv.2017.14.28Search in Google Scholar

Faccioli G., Capponi R., 1983. An antiviral factor present in plants of Chenopodium amaranticolor locally infected by Tobacco necrosis virus: 1. Extraction, partial purification, biological and chemical properties, J. Phytopathol. 106(4), 289-301.10.1111/jph.1983.106.4.289Search in Google Scholar

Fan H.T., Song B.A., Bhadury P.S., Jin L.H., Hu D.Y., Yang S., 2011. Antiviral activity and mechanism of action of novel thiourea containing chiral phosphonate on Tobacco mosaic virus. Int. J. Mol. Sci. 12, 4522-4535.10.3390/ijms12074522Search in Google Scholar

Folin O., Ciocalteu V., 1927. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73, 627-650.10.1016/S0021-9258(18)84277-6Search in Google Scholar

Goodman R.N., Kiraly Z., Zaitlin M., 1967. The Biochemistry and Physiology of Infectious Plant Diseases. D. Van Nostrand Co. Inc., Princeton, New Jersey, USA.Search in Google Scholar

Hammerschmidt R., Nuckles E.M., Kuc J., 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20, 73-76.10.1016/0048-4059(82)90025-XSearch in Google Scholar

Helal I.M., 2017. Control of damping-off disease in some plants using environmentally safe biocides. Pak. J. Bot. 49(1), 361-370.Search in Google Scholar

Helal I.M.M., Abdeldaiem M. H., 2008. Control of black rot disease of tomato fruits using formulated ginger essential oil treated by gamma radiation. Proc. 9th International Conference of Nuclear Sciences and Applications, 11–14 Feb 2008 Sharm El-Shiekh – Sinai – Egypt.Search in Google Scholar

Jin Y., Hou L., Zhang M., Tian Z., Cao A., Xie X., 2014. Antiviral activity of Eupatorium adenophorum leaf extract against Tobacco mosaic virus. Crop Prot. 60, 28-33.10.1016/j.cropro.2014.02.008Search in Google Scholar

Kobeasy M.I., EL–Shazly M.A., Rashed M.M., Yousef R.S., 2013. Antiviral action of lavender (Lavendular vera) essential oil against Tomato spotted wilt virus infected tomato plant. J. Chem. Acta 2, 53-60.Search in Google Scholar

Kofalvi S.A., Nassuth A., 1995. Influence of Wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiol. Mol. Plant Pathol. 47, 365-377.10.1006/pmpp.1995.1065Search in Google Scholar

Laurie J., 1975. Handbook of Analytical Chemistry. Mir Publishers, Moscow, Russia.Search in Google Scholar

Mahdy A.M.M., Fawzy R.N., Hafez M.A., Mohamed H.A.N., Shahwan E.S.M., 2007. Inducing systemic resistance against Bean yellow mosaic potyvirus using botanical extracts. Egyptian J. Virol. 4, 129-145.Search in Google Scholar

Malik C.P., Singh M.B., 1980. Plant enzymology and histoenzymology. Kalyani Publishers, New Delhi, India.Search in Google Scholar

Min L., Han Z., Xu Y., Yao L., 2013. In vitro and in vivo anti-Tobacco mosaic virus activities of essential oils and individual compounds. J. Microbiol. Biotechnol. 23(6), 771-778.10.4014/jmb.1210.10078Search in Google Scholar

Mofunanya A.A.J., Edu E.A., 2015. Physiological and biochemical changes in Cucurbita moschata Duch. Ex. Poir inoculated with a Nigerian strain of Moroccan Watermelon mosaic virus (MWMV): Lagenaria breviflora isolate. Int. J. Plant Pathol. 6(2), 36-47.10.3923/ijpp.2015.36.47Search in Google Scholar

Mofunanya A.A.J., Owolabi A.T., Nkang A., 2016. Time course evaluation of the activities of some enzymes in Telfairia mosaic virus infected ecotypes of Telfairia occidentalis Hook f. Plant Pathol. J. 15, 86-94.10.3923/ppj.2016.86.94Search in Google Scholar

Mohamed E.F., 2010. Antiviral properties of garlic cloves juice compared with onion bulbs juice against Potato virus Y (PVY). J. Am. Sci. 6(8), 302-310.Search in Google Scholar

Othman B.A., Shoman S.A., 2004. Antiphytoviral activity of the Plectranthus tenuiflorus on some important viruses. Int. J. Agric. Biol. 6, 844-849.Search in Google Scholar

Petrov N., Stoyanova M., Valkova M., 2016. Antiviral activity of plant extract from Tanacetum vulgare against Cucumber mosaic virus and Potato virus Y. J. BioSci. Biotechnol. 5(2), 189-194.Search in Google Scholar

Rao G., Ghosal M., Shukla K., 1989. Comparative study of carbohydrate and protein content of Radish mosaic virus infected, inhibitor treated and healthy radish plants. Indian J. Virol. 5, 123-126.Search in Google Scholar

Reimers P., Leach J., 1991. Race-specific resistance to Xanthomonas oryzae pv. oryzae conferred by bacterial blight resistance gene Xa-10 in rice (Oryza sativa) involves accumulation of a lignin-like substance in host tissues. Physiol. Mol. Plant Pathol. 38, 39-55.10.1016/S0885-5765(05)80141-9Search in Google Scholar

Riedle-Bauer M., 1998. Activities of antioxidant enzymes in cucumber plants infected with Cucumber mosaic virus. Phyton. (Horn, Austria) 37, 251-258.Search in Google Scholar

Shukla H.S., Dubey P., Chaturvedi R.V., 1989. Antiviral properties of essential oils of Foeniculum vulgare and Pimpinella anisum L. Agronomie 9(3), 277-279.10.1051/agro:19890307Search in Google Scholar

Singh H.P., Kaur S., Batish D.R., Kohli R.K., 2014. Ferulic acid impairs rhizogenesis and root growth, and alters associated biochemical changes in mung bean (Vigna radiata) hypocotyls. J. Plant Interact. 9, 267-274.10.1080/17429145.2013.820360Search in Google Scholar

Smith J.H.C., Benitez A., 1955. Chlorophylls analysis in plant materials. In: Modern Methods of Plant Analysis. vol. 4. K. Peach and M.V. Tracey (Eds), Springer-Verlag, Berlin, Germany, 142-196.10.1007/978-3-642-64961-5_6Search in Google Scholar

Solecka D., Kacperska A., 2003. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol. Plant. 119, 253-262.10.1034/j.1399-3054.2003.00181.xSearch in Google Scholar

Wang F., Feng G., Chen K., 2009. Defense responses of harvested tomato fruit to burdock fructooligosaccharide, a novel potential elicitor. Postharv. Biol. Technol. 52, 110-116.10.1016/j.postharvbio.2008.09.002Search in Google Scholar

Waziri H.M.A., 2015. Plants as antiviral agents. J. Plant Pathol. Microbiol. 6, 254.10.4172/2157-7471.1000254Search in Google Scholar

Xi D., Li J., Han C., Li D., Yu J., Zhou X., 2008. Complete nucleotide sequence of a new strain of Tobacco necrosis virus A infecting soybean in China and infectivity of its full-length cDNA clone. Virus Genes 36, 259-266.10.1007/s11262-007-0185-x18071890Search in Google Scholar

Zhao L., Chen Y., Wu K., Yan H., Hao X., Wu Y., 2017. Application of fatty acids as antiviral agents against Tobacco mosaic virus. Pest. Biochem. Physiol. 139, 87-91.10.1016/j.pestbp.2017.05.00528595927Search in Google Scholar

Zitikaitė I., Staniulis J., 2009. Isolation and characterization of Tobacco necrosis virus detected on some vegetable species. Biologija 55, 35-39.10.2478/v10054-009-0007-2Search in Google Scholar

eISSN:
2083-5965
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, Ecology, other