Open Access

Diversity of soil bacteria complexes associated with summer truffle (Tuber aestivum)


Cite

Baciarelli-Falini, L., Rubini, A., Riccioni, C., Paolocci, F. 2006. Morphological and molecular analyses of ectomycorrhizal diversity in a man-made T. melanosporum plantation: description of novel truffle-like morphotypes. Mycorrhiza, 16, 475–484.10.1007/s00572-006-0066-516909286Search in Google Scholar

Baldrian, P. et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal, 6, 248–258.Search in Google Scholar

Barbieri, E. et al. 2005. New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii. FEMS Microbiology Letters, 247, 23–35.Search in Google Scholar

Barbieri, E. et al. 2007. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology, 9, 2234–2246.Search in Google Scholar

Barbieri, E. et al. 2010. New evidence for nitrogen fixation within the Italian white truffle Tuber magna-tum. Fungal Biology, 114, 936–942.Search in Google Scholar

Bulletins of the State Hydrological and Meteorological Service of the Institute of Meteorology and Water Management (IMGW-PIB).Search in Google Scholar

Błaszczyk, M.K. 2010. Mikrobiologia środowisk. Wydawnictwo PWN, Warszawa.Search in Google Scholar

Citterio, B. et al. 1995. Isolation of bacteria from sporocarps of Tuber magnatum Pico, Tuber borchii Vitt. and Tuber maculatum Vitt. In: Biotechnology of ectomycorrhizae, (eds. V. Stocchi, P. Bonfante, M. Nuti). Plenum Press, New York, 241–248.Search in Google Scholar

Deveau, A. et al. 2016. Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza, 26, 389–399.Search in Google Scholar

Forest Database Bank. Available at http://www.bdl.lasy.gov.pl/Search in Google Scholar

Frąc, M., Jezierska-Tys, S. 2010. Różnorodność mikroorganizmów środowiska glebowego. Postępy Mikrobiologii, 49, 47–58.Search in Google Scholar

Frey-Klett, P., Garbaye, J.A., Tarkka, M. 2007. The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22–36.Search in Google Scholar

Garbaye, J., Churin, J.L., Duponnois, R. 1992. Effects of substrate sterilization, fungicide treatment, and mycorrhization helper bacteria on ectomycorrhizal formation of pedunculate oak (Quercus robur) inoculated with Laccaria laccata in two peat bare-root nurseries. Biology and Fertility of Soils, 13, 55–57.10.1007/BF00337239Search in Google Scholar

Gotkowska-Płachta, A., Filipkowska, Z., Korzeniewska, E., Janczukowicz, W. 2008. Zanieczyszczenia mikrobiologiczne powietrza atmosferycznego na terenie iw otoczeniu oczyszczalni ścieków z systemem stawów napowietrznych. Woda-Środowisko-Obszary Wiejskie, 8, 83–98.Search in Google Scholar

Górska, E., Russel, S. 2004. Występowanie tlenowych, przetrwalnikujących bakterii celulolitycznych w glebach leśnych. Acta Agraria et Silvestria. Series Agraria, 42, 177–186.Search in Google Scholar

Gryndler, M., Hršelová, H. 2012. Isolation of bacteria from ectomycorrhizae of Tuber aestivum Vittad. Acta Mycologica, 47, 155–160.Search in Google Scholar

Gryndler, M. et al. 2013. A quest for indigenous truffle helper prokaryotes. Environmental Microbiology Reports, 5, 346–352.Search in Google Scholar

Hilszczańska, D., Rosa-Gruszecka, A., Sikora, K., Szmidla, H. 2013. First report of Tuber macrosporum occurrence in Poland. Scientific Research and Essays, 8, 1096–1099.Search in Google Scholar

Hilszczańska, D. 2016. Polskie trufle skarb odzyskany. Centrum Informacyjne Lasów Państwowych, Warsaw, Poland.Search in Google Scholar

Hilszczańska, D., Rosa-Gruszecka, A., Gawryś, R., Horak, J. 2019a. Effect of soil properties and vegetation characteristics in determining the frequency of Burgundy truffle fruiting bodies in Southern Poland. Écoscience, 26, 113–122.10.1080/11956860.2018.1530327Search in Google Scholar

Hilszczańska, D., Szmidla, H., Sikora, K., Rosa-Gruszecka, A. 2019b. Soil Properties Conducive to the Formation of Tuber aestivum Vitt. Fruiting Bodies. Polish Journal of Environmental Studies, 28, 1713–1718.Search in Google Scholar

Ipsilantis, I., Sylvia, D.M. 2007. Interactions of assemblages of mycorrhizal fungi with two Florida wet-land plants. Applied Soil Ecology, 35, 261–271.Search in Google Scholar

Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M., Sait, M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68, 2391–2396.Search in Google Scholar

Kołwzan, B., Adamiak, W., Grabas, K., Pawełczyk, A. 2005. Podstawy mikrobiologii w ochronie środowiska. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, Poland.Search in Google Scholar

Kozdrój, J. 2013. Metagenom – źródło nowej informacji o mikroorganizmach glebowych. Postępy Mikrobiologii, 52, 185–200.Search in Google Scholar

Krivtsov, V., Bellinger, E.G., Sigee, D. 2005. Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquatic Ecology, 39, 123–134.Search in Google Scholar

Lane, D.J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics (eds. E. Stackebrandt, M. Goodfellow). John Wiley and Sons, 115–175.Search in Google Scholar

Lehr, N.A., Schrey, S.D., Hampp, R., Tarkka, M.T. 2008. Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist, 177, 965–976.Search in Google Scholar

Maier, A., Riedlinger, J., Fiedler, H.P., Hampp, R. 2004. Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycological Progress, 3, 129–136.10.1007/s11557-006-0083-ySearch in Google Scholar

Mamoun, M., Olivier, J.M. 1992. Effect of soil Pseudomonads on colonization of hazel roots by the ecto-mycorrhizal species Tuber melanosporum and its competitors. Plant and Soil, 139, 265–273.Search in Google Scholar

Mello, A. et al. 2013. Truffle brûlés have an impact on the diversity of soil bacterial communities. PLoS One, 8 (4), 61945.Search in Google Scholar

Olivier, J., Savignac, J., Sourzat, P. 2012. Truffe et Trufficulture. Fanlac, Périgueux, France.Search in Google Scholar

Ncbi.nlm.nih.gov. Available at http://www.ncbi.nlm.nih.gov/ (access on 15 November 2017).Search in Google Scholar

PN-ISO 10390:1997. 1997. Jakość gleby. Oznaczanie pH. Polski Komitet Normalizacyjny, Warszawa.Search in Google Scholar

PN-ISO 10694:2002. 2002. Jakość gleby – Oznaczanie zawartości węgla organicznego i całkowitej zawartości węgla po suchym spalaniu (analiza elementarna). Polski Komitet Normalizacyjny, Warszawa.Search in Google Scholar

PN-ISO 13878:2002. 2002. Jakość gleby – Oznaczanie zawartości azotu całkowitego po suchym spalaniu (‘analiza elementarna’). Polski Komitet Normalizacyjny, Warszawa.Search in Google Scholar

PN-EN ISO 11260:2011. 2011. Jakość gleby – Oznaczanie efektywnej pojemności wymiennej kationowej i stopnia wysycenia zasadami z zastosowaniem roztworu chlorku baru. Polski Komitet Normalizacyjny, Warszawa.Search in Google Scholar

Pociejowska, M., Natywa, M., Gałązka, A. 2014. Stymulacja wzrostu roślin przez bakterie PGPR. Kosmos, 4, 603–610.Search in Google Scholar

Rosa-Gruszecka, A., Hilszczańska, D., Szmidla, H. 2014. Warunki środowiskowe sprzyjające występowaniu trufli (Tuber spp.) na historycznych stanowiskach w Polsce. Leśne Prace Badawcze, 75, 5–11.Search in Google Scholar

Sait, M., Hugenholtz, P., Janssen, P.H. 2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environmental Micro-biology, 4, 654–666. DOI: https://doi.org/10.1046/j.1462-2920.2002.00352.x10.1046/j.1462-2920.2002.00352.x12460273Search in Google Scholar

Saltarelli, R., Ceccaroli, P., Cesari, P., Barbieri, E., Stocchi, V. 2008. Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chemistry, 109, 8–16.Search in Google Scholar

Sbrana, C., Agnolucci, M., Bedini, S., Lepera, A., Toffanin, A., Giovannetti, M., Nuti, M.P. 2002. Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiology Letters, 211, 195–201.Search in Google Scholar

Schrey, S.D., Salo, V., Raudaskoski, M., Hampp, R., Nehls, U., Tarkka, M.T. 2007. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Current Genetics, 52, 77–85.10.1007/s00294-007-0138-x17632722Search in Google Scholar

Siebyła, M., Hilszczańska, D. 2017. Różnorodność gatunkowa bakterii powiązanych z grzybami z rodzaju Tuber (trufla). Postępy Mikrobiologii, 56, 24–28.Search in Google Scholar

Solon, J. et al. 2018. Mezoregiony fizyczno-geograficzne Polski: weryfikacja i dostosowanie granic na podstawie współczesnych danych przestrzennych. Geographia Polonica, 91 (2).Search in Google Scholar

Torsvik, V., Ovreas, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5, 240–245.Search in Google Scholar

Zwoliński, J. 2005. Oznaczanie udziału grzybów i bakterii w biomasie drobnoustrojów gleb leśnych. Leśne Prace Badawcze, 4, 7–18.Search in Google Scholar

Vahdatzadeh, M., Deveau, A., Splivallo, R. 2015. The role of the microbiome of truffles in aroma formation: a meta-analysis approach. Applied and Environmental Microbiology, 81, 6946–6952.Search in Google Scholar

eISSN:
2199-5907
ISSN:
0071-6677
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Medicine, Veterinary Medicine