Open Access

Wood structure of Scots pine (Pinus sylvestris L.) growing on flotation tailings


Cite

Barniak, J., Krąpiec, M. 2009. The influence of industry on Scots pine stands in the Tarnobrzeg area on the basis of dendrochronological analysis. Sylwan, 153 (12), 825–835.Search in Google Scholar

Białobok, S., Boratyński, A., Bugała, W. 1993. The biology of Scots pine. Sorus, Poznań – Kórnik.Search in Google Scholar

Błocka, A., Staszewski, T. 2007. Fluctuating asymmetry of needles as a non-specific stress indicator of Scots pine (Pinus sylvestris L.). Leśne Prace Badawcze, 4, 125–131.Search in Google Scholar

Chudzińska, E., Pawlaczyk, E. M., Celiński, K., Diatta, J. 2014. Response of Scots pine (Pinus sylvestris L.) to stress induced by different types of pollutants – testing the fluctuating asymmetry. Water and Environment Journal, 28 (4), 533–539. doi:10.1111/wej.1206810.1111/wej.12068Open DOISearch in Google Scholar

Danek, M. 2008. The influence of industry on the tree-ring width of pines (Pinus sylvestris L.) living in the Olkusz region. Sylwan, 152 (11), 56–62.Search in Google Scholar

Duszyński, F. 2014. The record of air pollution in tree rings. Przegląd Geograficzny, 86 (3), 317–338. doi:10.7163/przg.2014.3.210.7163/przg.2014.3.2Open DOISearch in Google Scholar

Ernst, W.H. 2006. Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80 (3), 251–274.Search in Google Scholar

Hagemeyer, J. 2004. Ecophysiology of plant growth under heavy metal stress. In: Heavy metal stress in plants (eds.: M.N.V. Prasad, J. Hagemeyer). Springer, Berlin, 201–222. doi:10.1007/978-3-662-07743-6_810.1007/978-3-662-07743-6_8Open DOISearch in Google Scholar

Hawryś, Z. 1987. Survival rate and growth of trees and shrubs under conditions of heavy air pollution with sulfur and heavy metal compounds. In: Reakcje biologiczne drzew na zanieczyszczenia przemysłowe. Materiały II Krajowego Sympozjum (ed.: R. Siwecki). Adam Mickiewicz University Press, Poznań, 247–255.Search in Google Scholar

Hüttermann, A., Arduini, I., Godbold, D.L. 2004. Metal pollution and forest decline. In: Heavy metal stress in plants (M.N.V. Prasad, J. Hagemeyer). Springer, Berlin, 295–312. doi:10.1007/978-3-662-07743-6_1210.1007/978-3-662-07743-6_12Open DOISearch in Google Scholar

Kask, R., Ots, K., Mandre, M., Pikk, J. 2008. Scots pine (Pinus sylvestris L.) wood properties in an alkaline air pollution environment. Trees, 22 (6), 815. doi:10.1007/s00468-008-0242-710.1007/s00468-008-0242-7Open DOISearch in Google Scholar

Keller, T. 1981. Folgen einer winterlichen SO2-belastung für die Fichte. Gartenbauwissenschaft, 46, 170–178.Search in Google Scholar

Komives, T., Gullner, G. 2006. Dendroremediation: the use of trees in cleaning up polluted soils. In: Phytoremediation Rhizoremediation (eds.: M. Mackova, D. Dowling, T. Macek). Springer, Dordrecht, 23–31. doi:10.1007/978-1-4020-4999-4_310.1007/978-1-4020-4999-4_3Open DOISearch in Google Scholar

Kozłowski, T.T., Pallardy, S.G. 1997. Growth control in woody plants. Elsevier, Amsterdam.Search in Google Scholar

Maćkowiak, M. 2016. The influence of contaminated soil on the increment dynamics and wood properties of Scots pine (Pinus sylvestris L.). Master’s thesis, Poznań.Search in Google Scholar

Mleczek, M., et al. 2016. The role of selected tree species in industrial sewage sludge/flotation tailing management. International Journal of Phytoremediation, 18 (11), 1086–1095. doi:10.1080/15226514.2016.118357910.1080/15226514.2016.118357927348264Open DOISearch in Google Scholar

Mleczek, M., et al. 2017. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environmental Science and Pollution Research, 24 (28), 22183–22195. doi:10.1007/s11356-017-9842-310.1007/s11356-017-9842-3562923128791581Open DOISearch in Google Scholar

Mleczek, M., et al. 2018. The importance of substrate compaction and chemical composition in the phyto-extraction of elements by Pinus sylvestris L. Journal of Environmental Science and Health, Part A, 53 (11), 1029–1038. doi:10.1080/10934529.2018.147 111610.1080/10934529.2018.147111629775396Open DOISearch in Google Scholar

Moliński, W. 2010. Variability of the microfibril angle in the tangential walls of the cells and the tensile strength in the direction of the grain within the individual annual rings of Pinus sylvestris L. wood. The final report of the research project Nr N N309 1693 33. Poznań.Search in Google Scholar

Niedzielska, B. 1986. The impact of air pollution on anatomical structure of wood of Scots pine (Pinus silvestris L.) growing within imissions mills “Bolesław” near Olkusz. Acta Agraria et Silvestria, Series Silvestris, 25, 131–141.Search in Google Scholar

Niedzielska, B. 1996. Comparative research on the impact of industrial pollution based on the properties of Scots pine (Pinus sylvestris L.) wood. Acta Agraria et Silvestria, Series Silvestris, 34, 105–120.Search in Google Scholar

Paschalis, P., Staniszewski, P. 1994. Changes in some indicators of properties of pine wood originated from industrially polluted regions. Sylwan, 138 (8), 35–41.Search in Google Scholar

Schweingruber, F. 2007. Wood structure and environment. Springer, Berlin, 87–92. doi:10.1007/978-3-540-48548-310.1007/978-3-540-48548-3Open DOISearch in Google Scholar

Sensuła, B., Opała, M., Wilczyński, S., Pawełczyk, S. 2015. Long- and short-term incremental response of Pinus sylvestris L. from industrial area nearby steelworks in Silesian Upland, Poland. Dendrochronologia, 36, 1–12.Search in Google Scholar

Sensuła, B., et al. 2017. Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories. Geochronometria, 44 (1), 226–239.10.1515/geochr-2015-0064Open DOISearch in Google Scholar

Sheppard, L.J. 1991. Causal mechanisms by which sulphate, nitrate and acidity influence forest hardiness in red spruce: review and hypothesis, New Phytologist, 127 (1), 69–82. doi:10.1111/j.1469-8137.1994.tb04260.x10.1111/j.1469-8137.1994.tb04260.xOpen DOISearch in Google Scholar

Stravinskiene, V., Bartkevicius, E., Plausinyte, E. 2013. Dendrochronological research of Scots pine (Pinus sylvestris L.) radial growth in vicinity of industrial pollution. Dendrochronologia, 31 (3), 179–186. doi:10.1016/j.dendro.2013.04.00110.1016/j.dendro.2013.04.001Open DOISearch in Google Scholar

Tulik, M., Kozakiewicz, P. 2005. Some physical and mechanical properties of pine wood (Pinus sylvestris L.) from excluded zones around the Chernobyl power station. Folia Forestalia Polonica, Series BWood Science, 36, 3–14.Search in Google Scholar

Watmough, S.A. 1999. Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analysis. Environmental Pollution, 106 (3), 391–403. doi:10.1016/s0269-7491(99)00102-510.1016/S0269-7491(99)00102-5Open DOISearch in Google Scholar

Wertz, B. 2012. Dendrochronological evaluation of the impact of industrial imissions on main coniferous species in the Kielce Upland. Sylwan, 156 (5), 379–390.Search in Google Scholar

Zwoliński, J., Orzeł, S. 2000. Productivity of Scots pine stands (Pinus sylvestris L.) along an industrial pollution gradient. Prace IBL, Ser. A, 1 (892/894), 75–98.Search in Google Scholar

eISSN:
2199-5907
ISSN:
0071-6677
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Medicine, Veterinary Medicine