Open Access

Carbon Sequestration of Above-Ground Biomass of Pinus Sylvestris L. in the Green Belt of the City of Astana


Cite

Dixon, R.K.K., Solomon, A.M.M., Brown, S.A., Houghton, R.A.A., Wisniewski, J. 1994. Carbon Pools and Flux of Global Forest Ecosystems. Science, 263, 5144.10.1126/science.263.5144.185Search in Google Scholar

Dmuchowski, W., Kurczynska, E.U., Wloch, W. 1998. Chemical Composition of Needles and Cambial Activity of Stems of Scots Pine Trees. USDA Forest Service Gen.Tech.Rep. PSW-GTR-166, 197-204.Search in Google Scholar

Gahagan, A., Giardina, C.P., King, J.S., Binkley, D., Pregitzer, K.S., Burton, A.J. 2015. Carbon fluxes, storage, and harvest removals through 60years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA. Forest Ecology and Management, 337, 88-97.10.1016/j.foreco.2014.10.037Search in Google Scholar

He, H., Zhang, C., Zhao, X., Fousseni, F., Wang, J., Dai, H., Yang, S., Zuo, Q. 2018. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests Northeastern China. PLoS ONE, 13 (1), 1-16.10.1371/journal.pone.0186226Search in Google Scholar

Jagiełło, R., Beker, C. 2017. Simplified model of diameter distribution for even−aged unthinned Scots pine (Pinus sylvestris L.) stands (in Polish with English summary). Sylwan, 161 (10), 822−830.Search in Google Scholar

Jagodziński, A.M., Dyderski, M.K., Gęsikiewicz, K., Horodecki, P., Cysewska, A., Wierczyńska, S., Maciejczyk, K. 2018. How do tree stand parameters affect young Scots pine biomass? - Allometric equations and biomass conversion and expansion factors. Forest Ecology and Management, 409, 4-83.10.1016/j.foreco.2017.11.001Search in Google Scholar

Jagodziński, A.M., Kałucka, I., Horodecki, P., Oleksyn, J. 2014. Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap. Dendrobiology, 72, 139-150. http://dx.doi.org/10.12657/denbio.072.012.10.12657/denbio.072.012Open DOISearch in Google Scholar

Liu, C.-J., Westman, C.J., Ilvesniemi, H. 2001. Matter and nutrient dynamics of pine (Pinus tabulaeformis) and oak (Quercus variabilis) litter in North China. Silva Fennica, 35 (1), 3-13.10.14214/sf.599Search in Google Scholar

Martin, J.G., Kloeppel, B.D., Schaefer, T.L., Kimbler, D.L., Steven, G., McNulty, S.G. 1998. Aboveground biomass and nitrogen allocation often deciduous southern Appalachian tree species. Canadian Journal of Forest Research, 28, 1648-1659.10.1139/x98-146Open DOISearch in Google Scholar

Oleksyn, J., Reich, P.B., Chałupka, W., Tjoelker, M.G. 1999. Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12- year-old provenance experiment. Scandinavian Journal of Forest Research, 14, 7-17. http://dx.doi.org/10.080/02827589908540804.10.1080/02827589908540804Search in Google Scholar

Osipov, A.F. 2017. Reserves and flows of organic carbon in the ecosystem of a ripe pine bilberry blueberry taiga. Siberian Forest Journal, 2, 70-80.Search in Google Scholar

Parzych, A., Sobisz, Z. 2012. The macro- and microelemental content of Pinus sylvestris L. and Pinus nigra J.F. Arn. needles in Cladonio-Pinetum habitat of the Słowiński National Park (in Polish with English summary). Leśne Prace Badawcze, 73 (4), 295-303.10.2478/v10111-012-0028-ySearch in Google Scholar

Skonieczna J., Małek S., Polowy K., Węgiel A. 2014. Element content of Scots pine (Pinus sylvestris L.) stands of different densities. Drewno, 57 (192), 77-87.Search in Google Scholar

Socha, J., Wężyk, P. 2004. Empirical formulae to assess the biomass of the above-ground part of pine trees. Electronic Journal of Polish Agricultural Universities, Forestry, 7. http://www.ejpau.media.pl/volume7/issue2/forestry/art-04.html.Search in Google Scholar

Son, Y., Gower S.T., 1991. Aboveground nitrogen and phosphorus use by five plantation-grown trees with different leaf longevities. Biogeochemistry, 14: 167-197.10.1007/BF00000806Open DOISearch in Google Scholar

Usoltsev, V.A. 2016. Phytomass of model trees of forestforming rocks of Eurasia: data base, climatically conditioned geography, taxation standards: scientific edition (ed.: V.А. Usoltsev). The Ural State Forest Engineering University, Ekaterinburg, Russia.Search in Google Scholar

Usoltsev, V.A., Zalesov, V.A. 2005. Methods for determining biological productivity. The Ural State Forest Engineering University, Ekaterinburg, Russia.Search in Google Scholar

Verma, A., Mondal, P. 2017. Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. Journal of Thermal Analysis and Calorimetry. 10.1007/s10973-017-6727-0.10.1007/s10973-017-6727-0Search in Google Scholar

Zasada, M., Bronisz, K., Bijak, Sz., Wojtan, R., Tomusiak, R., Dudek, A., Michalak, K., Wróblewski, L. 2008. Empirical formulae for determination of the dry biomass of aboveground parts of the tree (in Polish with English summary). Sylwan, 152 (3), 27-39.Search in Google Scholar

Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs, 4, 63.10.14214/sf.sfm4Search in Google Scholar

Zhang, Q., Wang, C., Wang, X., Quan, X. 2009. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management, 258 (5), 722-727.10.1016/j.foreco.2009.05.009Search in Google Scholar

eISSN:
2199-5907
ISSN:
0071-6677
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Medicine, Veterinary Medicine