Open Access

Mechano-sorptive creep of Portuguese pinewood chemically modified


Cite

Bengtsson C. 2000. Creep of timber in different loading modes - material properties aspects. in The 7th World Conference on Timber Engineering, August 12-15, Shah Alam, Malaysia.Search in Google Scholar

Bengtsson C. 2001. “Short-term” mechano-sorptive creep of well-defined spruce timber. Holz als Roh und Werkstoff, 59, 117-128.Search in Google Scholar

Bollmus S., Dieste A., Militz H., Rademacher P. 2009. Properties of modified beechwood. Forst und Holz, 64 (7/8), 30-34.Search in Google Scholar

DIN 52 185. 1976. Testing of wood: Compression test parallel to the grain. Deutsches Institut Für Normung e.V. Normen über Holz, Biegeversuch, Beuth, Berlin, September (in German).Search in Google Scholar

DIN 52 186. 1978. Testing of wood; bending test. Deutsches Institut Für Normung e.V. Normen über Holz, Biegeversuch, Beuth, Berlin (in German).Search in Google Scholar

DIN 52 188. 1979. Testing of wood: Determination of ultimate tensile stress parallel to grain. Deutsches Institut Für Normung e.V. Normen über Holz, Berlin, May (in German).Search in Google Scholar

Dinwoodie J.M., Paxton B.H., Pierce C.B. 1981. Creep in Chipboard. Part 3: Initial Assessment of the Influence of Moisture Content and Level of Stressing on Rate of Creep and Time to Failure. Wood Science and Technology, 15, 125-144.Search in Google Scholar

Dinwoodie J.M.W., Pierce C.B., Paxton B.H. 1984. Creep in chipboard. Part 4: The influence of temperature and moisture content on the creep behaviour of a range of boards at a single stress level. Wood Science and Technology, 18, 205-224.Search in Google Scholar

Dinwoodie J.M., Higgins J.A., Paxton B.H., Robson D.J. 1990. Creep in chipboard. Part 7: Testing the efficacy of models on 7-10 years data and evaluating optimum period of prediction. Wood Science and Technology, 24, 181-189.Search in Google Scholar

Dinwoodie J.M., Robson D.J., Paxton B.H., Higgins J.S. 1991a. Creep in chipboard. Part 8: The effect of steady-state moisture content, temperature and lev el of stressing on the relative creep behaviour and creep modulus of a range of boards. Wood Science and Technology, 25, 225-238.Search in Google Scholar

Dinwoodie J.M., Paxton B.H., Higgins J.-A., Robson D.J. 1991b. Creep in chipboard. Part 10: The effect of variable climate on the creep behaviour of a range of chipboards and one wafer board. Wood Science and Technology, 26 (1), 39-51.Search in Google Scholar

Dinwoodie J.M., Higgins J.-A., Paxton B.H., Robson D.J. 1992. Creep in chipboard. Part 11: The effect of cyclic changes in moisture content and temperature on the creep behaviour of a range of boards at different levels of stressing. Wood Science and Technology, 26 (6), 429-448, DOI 10.1007/ BF00229247.Search in Google Scholar

Donath S., Militz H., Mai C. 2004. Wood modification with alkoxys. Wood Science and Technology, 38, 555-566.Search in Google Scholar

EN NP 408. 2003. Timber structures - Structural timber and glued laminated timber - Determination of some physical and mechanical properties. CEN Comité Européen de Normalisation, Bruxelles.Search in Google Scholar

ENV 1156. 1999. Wood-based panels. Determination of duration of load and creep factors. CEN Comité Européen de Normalisation, Bruxelles.Search in Google Scholar

Epmeier H. 2006. Moisture-related properties of modified timber - an experimental study. Ph.D. thesis, Chalmers tekniska högskola - Institutionen för byggoch miljöteknik, Chalmers, Sweden, N. serie, no. 2533.Search in Google Scholar

Epmeier H., Westin M., Rapp A. 2004. Differently modified wood: Comparison of some selected properties. Scandinavian Journal of Forest Research, 19 (5), 31-37.Search in Google Scholar

Epmeier H., Johansson M., Kliger R., Westin M. 2007. Bending creep performance of modified timber. Holz als Roh und Werkstoff, 65, 343-351.Search in Google Scholar

Epmeier H., Kliger R. 2005. Experimental study of material properties of modified Scots pine. Holz als Roh- und Werkstoff, 63, 430-436.Search in Google Scholar

Green D.W., Evans J.W. 2008. Effect of cyclic long-term temperature exposure on the bending strength of lumber. Wood and Fiber Science, 40 (2), 288-300.Search in Google Scholar

Hanhijärvi A. 1999. Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying, part 2. Experimental results under constant conditions (visco elastic creep). Holz als Roh-und Werkstoff, 57, 365-372.Search in Google Scholar

Hoffmeyer P., Davidson R.W. 1989. Mechano-sorptive creep mechanism of wood in compression and bending. Wood Science and Technology, 23 (3), 215-227.Search in Google Scholar

Holzer S.M., Loferski J.R., Dillard D.A. 1989. A review of creep in wood: concepts relevant to develop longterm behaviour predictions for wood structures. Wood and Fiber Science, 21 (4), 376-392.Search in Google Scholar

Homan W.J., Bongers F. 2004. Influence of up-scaling processes on degree and gradient of acetylation in Spruce and Beech. In: COST Action E22 (Hg.) Environmental Optimisation of Wood Protection. COST Action E22, Estoril, Portugal.Search in Google Scholar

Hoyle R.J., Griffith M.C., Itani R.Y. 1985. Primary Creep in Douglas-Fir Beams of commercial size and quality. Wood and Fiber Science, 17 (3), 300-314.Search in Google Scholar

Hunt D.G. 2004. The prediction of long-time viscoelastic creep from short-time data. Wood Science and Technology, 38, 479-492.Search in Google Scholar

Hunt D.G., Shelton C.F. 1988. Longitudinal moistureshrinkage coefficients of softwood at the mechano-sorptive creep limit. Wood Science and Technology, 23, 323-333.Search in Google Scholar

Logsdon N.B. 1998. Influência da umidade nas propriedades de resistência e rigidez da madeira. Ph.D. thesis, Escola de Engenharia de São Carlos - Universidade de São Paulo, São Carlos-Brasil (in Portuguese).Search in Google Scholar

Lopes D.B., Mai C., Militz H. 2012. Mechanical Properties and Creep Performances of Chemical Modified Portuguese Wood. In: Proceedings of the 6th European Conference on Wood Modification, Ljubljana (eds.: D. Jones, H. Militz, M. Petric, F. Pohleven, M.Search in Google Scholar

Humar and M. Pavlic), 55-62.Search in Google Scholar

Morlier P. 1994. Creep in timber structures: report of RILEM Technical Committee 112-TSC, P. Morlier, London: Spon.10.1201/9781482294750Search in Google Scholar

Mai C., Xie Y., Xiao Z., Bollmus S., Vetter G., Krause A., Militz H. 2007. Influence of the modification with different aldehyde-based agents on the tensile strength. In: The Third European Conference on Wood Modification, Bangor, UK (eds.: C.A.S Hill, D. Jones, H. Militz, G.A. Ormondroyd), 49-56.Search in Google Scholar

Militz H. 1993. Treatment of timber with water soluble dimethylol resins to improve their dimensional sta bility and durability. Wood Science and Technology, 27, 347-355.Search in Google Scholar

Mohager S., Toratti T. 1993. Long term bending creep of wood in cyclic relative humidity. Wood Science and Technology, 27, 49-59.Search in Google Scholar

Molinski W., Raczkowski J. 1988. Creep of wood in bending and non-symmetrical moistening. Holz als Roh- und Werkstoff, 46 (12), 457-460.Search in Google Scholar

Norimoto M., Gril J., Rowell R.M. 1992. Rheological properties of chemically modified wood: relationship between dimensional and creep stability. Wood and Fiber Science, 24 (1), 25-35.Search in Google Scholar

Pfeffer A.G. 2011. Effect of water glass, silane and DMDHEU treatment on the colonisation of wood by sapstaining fungi. Ph.D. thesis, Georg-August- Universitat Goettingen, Germany. Instruction Manual Protimeter MMS Moisture Measurement System, 2005. INS5800A, October available 05-2011: http://www.ge-mcs.com/download/sensing-manuals/MMS-Instruction.pdf.Search in Google Scholar

Ranta-Maunus A., Kortesmaa M. 2000. Creep of timber during eight years in natural environments. World Conference on Timber Engineering. Whistler, CA, 31 July-3 August, available 07-2010: http://www.vtt.fi/inf/pdf/jurelinkit/RTE_Ranta-Maunus3.pdf.Search in Google Scholar

Roszyk E. 2005. Effect of bending stresses on the wood creep in conditions of asymmetric changes in moisture content. Folia Forestalia Polonica, Series B, 36, 15-26.Search in Google Scholar

Rowell R.M. 1996. Physical and mechanical properties of chemically modified wood. In: Chemical modification of lingocellulosic materials (ed.: R.M.Search in Google Scholar

Rowell), Marcel Dekker, New York, 295-310.Search in Google Scholar

Santos J.A. 2009. Estudo de modelos e caracterização do comportamento mecânico da madeira. Ph.D. thesis, Universidade do Minho, Guimarães-Portugal (in Portuguese).Search in Google Scholar

Schniewind A.P. 1967. Creep-rupture life of Douglas-fir under cyclic environmental conditions. Wood Science and Technology, 1 (4), 278-288.Search in Google Scholar

Schniewind A.P. 1968 Recent progress in the study of the theology of wood. Wood Science and Technology, 2, 188-206.Search in Google Scholar

Scholz G., Krause A., Militz H. 2009. Capillary water uptake and mechanical properties of wax soaked Scots pine. In: The Fourth European Conference on Wood Modification. 4th European Conference on Wood Modification, Stockholm (eds.: F. Englund, C.A.S. Hill, H. Militz, B.K. Segerholm), 209-212.Search in Google Scholar

Xie Y., Krause A., Militz H., Turkulin H., Richter K., Mai C. 2007 Effect of treatments with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) on the tensile properties of wood. Holzforschung, 61, 43-50. Search in Google Scholar

eISSN:
2199-5907
ISSN:
0071-6677
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Medicine, Veterinary Medicine