Open Access

Development of Diffraction Research Methodologies for Mediloy S-CO Alloy Speciments Made Using LPBF Additive Manufacturing


Cite

This study focuses on the application and improvement of diffraction measurement methodologies for the optimization of manufacturing parameters of CoCr alloy components made by additive manufacturing (AM) – particularly for Mediloy S-Co alloy specimens made using Laser Powder Bed Fusion (LPBF) additive manufacturing. We measured the phase composition of specimens obtained in AM processes, the measurement of residual stresses resulting from the manufacture of these printed parts, as well as the effectiveness of stress relaxation through the use of heat treatments dedicated to this type of material. Findings reveal several insights into how printing strategies affect the porosity and residual stresses in additive manufacturing. Specimens with higher porosity, particularly those created using specific strategies that resulted in lower energy densities, exhibited lower residual stresses. Notably, printing direction and energy density were found to significantly affect the mechanical stresses within the specimens, with directional choices playing a critical role in the final properties of the parts. Additionally, our findings underscore the complex relationship between various printing parameters and the development of mechanical stresses, highlighting the impact of adjustments in printing strategy on the properties of printed components.

eISSN:
2300-7591
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other