Open Access

Radar reflectivity signatures and possible lead times of warnings for very large hail in Poland based on data from 2007-2015


Cite

Amburn S.A., Wolf P. L. 1997. VIL Density as a Hail Indicator. Weather and Forecasting, 12: 473–478.Search in Google Scholar

Bieringer P., Ray P.S. 1996. A Comparison of Tornado Warning Lead Times with and without NEXRAD Doppler Radar. Weather and Forecasting, 11: 47–52.Search in Google Scholar

Brotzge J., Erickson S. 2009. NWS Tornado Warnings with Zero or Negative Lead Times. Weather and Forecasting, 24: 140–154.Search in Google Scholar

Chisholm A.J., Renick J.H. 1972. The kinematics of multicell and supercell Alberta hailstorms. Alberta hail studies 1972. Research Council of Alberta Hail Studies Report, 72, 2: 24–31.Search in Google Scholar

Czernecki B., Taszarek M., Kolendowicz L., Konarski J. 2016. Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland. Atmospheric Research, 167: 118–128.Search in Google Scholar

Czernecki B., Taszarek M., Marosz M., Kolendowicz L., Półrolniczak M., Wyszogrodzki A., Szturc J. 2019. Application of machine learning to large hail prediction – the importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmospheric Research, 227, 1: 249–262.10.1016/j.atmosres.2019.05.010Search in Google Scholar

Delobbe L., Holleman I., 2006. Uncertainties in radar echo top heights used for hail detection. Meteorological Applications, 13: 361–374.10.1017/S1350482706002374Search in Google Scholar

Donavon R.A., Jungbluth K.A, 2007. Evaluation of a Technique for Radar Identification of Large Hail across the Upper Midwest and Central Plains of the United States. Weather and Forecasting, 22: 244–254.10.1175/WAF1008.1Search in Google Scholar

Doswell C.A. 2001. Severe Convective Storms – An Overview. [in:] C.A. Doswell (Eds.) Severe Convective Storms, American Meteorological Society, Boston: 1–26.Search in Google Scholar

Doswell C.A., Burgess D.W. 1993. Tornadoes and tornadic storms: A review of conceptual models. [in:] C. Church, D. Burgess, C.A. Doswell, R. Davies-Jones (Eds.) The Tornado: Its Structure, Dynamics, Prediction and Hazards. Geophysical Monograph Series, 79, American Geophysical Union: 161–172.Search in Google Scholar

Dotzek N., Groenemeijer P., Feuerstein B., Holzer A.M. 2009. Overview of ESSL's severe convective storms research using the European Severe Weather Database ESWD. Atmospheric Research, 93: 575–586.Search in Google Scholar

Ebert E.E., Holland G.J. 1992. Observations of record cold cloud-top temperatures in tropical cyclone Hilda (1990). Monthly Weather Review, 120, 10: 2240–2251.Search in Google Scholar

Farnell C., Rigo T., Pineda N. 2016. Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia. Atmospheric Research, 183: 130–141.Search in Google Scholar

Foote G.B. 1984. A study of hail growth utilizing observed storm conditions. Journal of Applied Meteorology and Climatology, 23: 84–101.Search in Google Scholar

Fujita T. 1973. Proposed mechanism of tornado formation from rotating thunderstorms. Proceedings 8th Conference on Severe Local Storms, 15–17 Oct. 1973, Boston, US.Search in Google Scholar

Grenier J.C., Admirat P., Zair S. 1983. Hailstone growth trajectories in the dynamic evolution of a moderate hailstorm. Journal of Applied Meteorology and Climatology, 22: 1008–1021.Search in Google Scholar

Groenemeijer P.H., Van Delden A. 2007. Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmospheric Research, 83: 473–487.Search in Google Scholar

Hartmann D.L., Klein Tank A.M.G., Rusticucci M., Alexander L.V., Brönnimann S., Charabi Y., Dentener F.J., Dlugokencky E.J., Easterling D.R., Kaplan A., Soden B.J., Thorne P.W., Wild M., Zhai P.M 2013. Observations: Atmosphere and Surface. [in:] T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.Search in Google Scholar

Jurczyk A., Szturc J., Otop I., Ośródka K., Struzik P. 2020. Quality-Based Combination of Multi-Source Precipitation Data. Remote Sensing, 12(11), 1709.Search in Google Scholar

Knight C.A., Knight N.C. 2001. Hailstorms. [in:] Doswell, C.A. (Eds.), Severe Convective Storms. American Meteorological Society, Boston: 223–254.Search in Google Scholar

Kumjian M.R., Ryzhkov A.V. 2008. Polarimetric Signatures in Supercell Thunderstorms. Journal of Applied Meteorology and Climatology, 47: 1940–1961.Search in Google Scholar

Kunz M., Kugel P.I.S. 2015. Detection of hail signatures from single-polarization C-band radar reflectivity. Atmospheric Research, 153: 565–577.Search in Google Scholar

Lemon L.R. 1980. Severe thunderstorms radar identification techniques and warning criteria: A preliminary report. NOAA Tech. Memo.Search in Google Scholar

Lemon L.R. 1998. The Radar ‘‘Three-Body Scatter Spike’’: An Operational Large-Hail Signature. Weather and Forecasting, 13: 327–340.Search in Google Scholar

Lopez L., Sanchez J.L. 2009. Discriminant methods for radar detection of hail. Atmospheric Research, 93: 358–368.Search in Google Scholar

Lukach M., Foresti L., Giot O., Delobbe L. 2017. Estimating the occurrence and severity of hail based on 10 years of observations from weather radar in Belgium. Meteorological Applications, 24: 250–259.Search in Google Scholar

Markowski P.M. 2002. Hook echoes and Rear-Flank Downdrafts: A Review. Monthly Weather Review, 130: 852–876.Search in Google Scholar

Marra A.C., Porcu F., Baldini L., Petracca M., Casella D., Dietrich S., Mugnai A., Sano P., Vulpiani G., Panegrossi G. 2017. Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of GPM Core observatory. Atmospheric Research, 192: 72–90.10.1016/j.atmosres.2017.03.019Search in Google Scholar

MikusJurkovic P., StrelecMahovic N., Pocakal D. 2015. Lightning, overshooting top and hail characteristics for strong convective storms in Central Europe. Atmospheric Research: 161–162, 153–168.Search in Google Scholar

Moller A.R. 2001. Severe Local Storms Forecasting. [in:] C.A. Doswell (Eds.) Severe Convective Storms. American Meteorological Society, Boston: 433–480.Search in Google Scholar

Nelson S.P., 1983. The influence of storm flow structure on hail growth. Journal of the Atmospheric Sciences, 40: 1965–1983.10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2Search in Google Scholar

Nisi L., Martius O., Hering A., Kunz M., Gremann U. 2016. Spatial and temporal distribution of hailstorms in the Alpine region: a long-term, high resolution, radar-based analysis. Quarterly Journal of the Royal Meteorological Society, 142, 697: 1590–1604.Search in Google Scholar

Pilorz W. 2014. Radarowa detekcja superkomórek burzowych w Polsce. Teledetekcja Środowiska, 51: 93–105.Search in Google Scholar

Pilorz W., Laskowski I., Łupikasza E. Taszarek M. 2016. Wind Shear and the Strength of Severe Convective Phenomena— Preliminary Results from Poland in 2011–2015. Climate, 4, 51.Search in Google Scholar

Punge H.J., Bedka K.M., Kunz M., Reinbold A. 2017. Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA – INTERIM reanalysis. Atmospheric Research, 198: 34–43.Search in Google Scholar

Punge H.J., Kunz M. 2016. Hail observations and hailstorm characteristics in Europe: A review. Atmospheric Research: 176–177, 159–184.Search in Google Scholar

Rasmussen E.N., Blanchard D.O. 1998. A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters. Weather and Forecasting, 13: 1148–1164.Search in Google Scholar

Schuster S.S., Blong R.J., McAneney K.J. 2006. Relationship between radar derived hail kinetic energy and damage to insured buildings for severe hailstorms in Eastern Australia, Atmospheric Research, 81: 215–235.Search in Google Scholar

Setvak M., Lindsey D.T., Novak P., Wang P.K., Radova M., Kerkmann J., Grasso L., Su S.-H., Rabin R.M., Staska J., Charvat Z. 2010. Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmospheric Research, 97: 80–96.Search in Google Scholar

Skripniková K., Řezáčová D. 2014. Radar-based hail detection. Atmospheric Research, 144: 175–185.Search in Google Scholar

Stefan S., Barbu N. 2018. Radar-derived parameters in hail-producing storms and the estimation of hail occurrence in Romania using a logistic regression approach. Meteorological Applications, 25: 614–621.Search in Google Scholar

Stout G.E., Huff F.A. 1953. Radar records Illinois tornado genesis. Bulletin of the American Meteorological Society, 34, 281–284.Search in Google Scholar

Stržinar G., Skok G. 2018. Comparison and optimization of radar-based hail detection algorithms in Slovenia. Atmospheric Research, 203: 275–285.Search in Google Scholar

Taszarek M., Brooks H.E., Czernecki B. 2017. Sounding-Derived Parameters Associated with Convective Hazards in Europe. Monthly Weather Review, 145: 1511–1528.Search in Google Scholar

Taszarek M., Czernecki B., Kozioł A. 2015. A Cloud-to-Ground Lightning Climatology for Poland. Monthly Weather Review, 143: 4285–4304.Search in Google Scholar

Trefalt S., Martynov A., Barras H., Besic N., Hering A.M., Lenggenhager S., Notie P., Röthlisberger M., Schemm S., Germann U., Martius O. 2018. A severe hail storm in complex topography in Switzerland – Observations and processes. Atmospheric Research, 209: 76–94.Search in Google Scholar

Tuszyńska I. 2011. Charakterystyka produktów radarowych. Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy, Warszawa.Search in Google Scholar

Twardosz R., Niedźwiedź T., Łupikasza E. 2010. Hail thunderstorms in Kraków and their circulation determinants (1863–2008). [in:] T. Ciupa, R. Suligowski (Eds.) Woda w badaniach geograficznych. Instytut Geografii Uniwersytet Jana Kochanowskiego, Kielce: 295–305.Search in Google Scholar

Villarini G., Krajewski W.F. 2010. Review of Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Survey in Geophysics, 31: 107–127.Search in Google Scholar

Waldvogel A., Federer B., Grimm P. 1979. Criteria for the Detection of Hail Cells, Journal of Applied Meteorology and Climatology, 18: 1521–1525.Search in Google Scholar

Wapler K. 2017. The life-cycle of hailstorms: Lightning, radar reflectivity and rotation characteristics. Atmospheric Research, 193: 60–72.Search in Google Scholar

Wilson J.W., Reum D. 1986. „The hail spike”: a reflectivity and velocity signature. Proceedings 23rd Conference on Radar Meteorology, 22–26 Sep. 1986, American Meteorological Society, Snowmass, US.Search in Google Scholar

Wilson J.W., Reum D. 1988. The flare echo: Reflectivity and velocity signature. Journal of Atmospheric and Oceanic Technology, 5: 197–205.Search in Google Scholar

Witt A. 1996. The relationship between low-elevation WSR-88D reflectivity and hail at the ground using precipitation observations from the VORTEX project. Proceedings 18th Conference on Severe Local Storms, 19–23 Feb. 1996, San Francisco, US: 183–185.Search in Google Scholar

Witt A. 1998. An Enhanced Hail Detection Algorithm for the WSR-88D. Weather and Forecasting, 13: 286–303.Search in Google Scholar

Zrnić D.S. 1987. Three-body scattering produces precipitation signature of special diagnostics signature. Radio Science, 22: 76–86.Search in Google Scholar

Zrnić D.S., Ryzhkov A.V. 1999. Polarimetry for Weather Surveillance Radars. Bulletin of the American Meteorological Society, 80: 389–406.Search in Google Scholar

eISSN:
2354-0079
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, Geography, Atmospheric Science and Climatology, Life Sciences, Plant Science, Ecology