Open Access

An overview of the experimental research use of lysimeters


Cite

Augenstein M., Goeppert N., Goldscheider N. 2015. Characterizing soil water dynamics on steep hillslopes from long-term lysimeter data. Journal of Hydrology, 529: 795–804.10.1016/j.jhydrol.2015.08.053Search in Google Scholar

Barkle G., Wöhlingb Th., Stengerb R., Mertensc J., Moorhead B., Wallb A., Clagueb J. 2011. Automated Equilibrium Tension Lysimeters for Measuring Water Fluxes through a Layered, Volcanic Vadose Profile in New Zealand. Vadose Zone Journal, 10, 2: 747–759.10.2136/vzj2010.0091Search in Google Scholar

Borowiak D. 2016. Historia Stacji Limnologicznej w Borucinie. [in:] J. Wendt (ed.) 70 lat gdańskiego ośrodka geograficznego: teraźniejszość i przeszłość. Wydawnictwo Libron, Kraków: 313–329.Search in Google Scholar

Brown C.D., Hollis J.M., Bettinson R.J., Walker A. 2000. Leaching of pesticides and a bromide tracer through lysimeters from five contrasting soils. Pest Management Science, 56, 1: 83–93.10.1002/(SICI)1526-4998(200001)56:1<83::AID-PS98>3.0.CO;2-8Search in Google Scholar

Cepuder P., Supersberg H. 1991. Erfahrungen mit der Lysimeteranlage Groß-Enzersdorf. Bundesanstalt für alpenländische Landwirtschaft, BAL – Bericht.Search in Google Scholar

Chmielewski W., Dmuchowski W., Molski B. 1985. Trees in the city as sinks for air pollution - field study with the used of portable lysimeters conducted in Warsaw. [in:] I. Supuka (ed.) Creation and Protection of Verdure in the Urbanized Landscape. VEDA, Bratislava: 103–108.Search in Google Scholar

Dabrowska D., Kucharski R., Witkowski A. 2016. The representativity index of a simple monitoring network with regular theoretical shapes and its practical application for the existing groundwater monitoring network of the Tychy-Urbanowice landfills, Poland. Environmental Earth Sciences, 75: 749.10.1007/s12665-016-5554-0Search in Google Scholar

Dabrowska D., Sołtysiak M., Cnota Ł. 2018a. Lysimeter experiments on municipal landfill waste – overview of current global research. 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Albena: 495–500.10.5593/sgem2018/5.1/S20.064Search in Google Scholar

Dabrowska D., Witkowski A., Sołtysiak M. 2018b. Application of pollution indices for the assessment of the negative impact of a municipal landfill on groundwater (Tychy, southern Poland). Geological Quarterly, 62, 3: 496–508.10.7306/gq.1420Search in Google Scholar

Dabrowska, D., Witkowski, A., Sołtysiak M. 2018c. Representativeness of the groundwater monitoring results in the context of its methodology. Environmental Earth Sciences, 77: 266.10.1007/s12665-018-7455-xSearch in Google Scholar

DVWK/Deutscher Verband für Wasserwirtschaft und Kulturbau e. V. (ed.). 1980. Empfehlungen zum Bau und Betrieb von Lysimetern. DVWK-Regeln zur Wasserwirtschaft, 114: 52.Search in Google Scholar

Elbl J., Plosek L., Kintl A., Prichystalova J., Zahora J., Friedel J. 2014. The Effect of Increased Doses of Compost on Leaching of Mineral Nitrogenmfrom Arable Land. Polish Journal of Environmental Studies, 23, 3: 697–703.Search in Google Scholar

Hoffmann M., Schwartengraber R., Wessolek G., Peters A. 2016. Comparison of simple rain gauge measurements with precision lysimeter data. Atmospheric Research, 174–175: 120–123.10.1016/j.atmosres.2016.01.016Search in Google Scholar

Howell T.A., Schneider A.D., Jensen M.E. 1991. History of Lysimeter Design and Use for Evapotranspiration Measurements. in: Lysimeters for Evapotranspiration and Environmental Measurements. Proceeding of International Symposium on Lysimetry. Honolulu, Hawaii, United States. American Society of Civil Engineers: 1–9Search in Google Scholar

Jancsó M., Szaloki T., Székely A., Szira F., Monostori I., Vágújfalvi A., Hoffmann B., Megyery Sz., Oncsik M.B. 2017. Characterization of 4 winter wheat cultivars with different Nitrogen Use Efficiency (NUE): Lysimeter study. 17. Gumpensteiner Lysimetertagung. Höhere Bundeslehrund Forschungsanstalt für Landwirtschaft, Raumberg-Gumpenstein: 103–106.Search in Google Scholar

Kalembkiewicz J., Sitarz-Palczak E. 2015. Efficiency of leaching tests in the context of the influence of the fly ash on the environment. Journal of Ecological Engineering, 16: 67–80.10.12911/22998993/589Search in Google Scholar

Kim, A. 2002. Ccb leaching summary: survey of methods and results. Proceedings: Coal combustion by-products and western coal mines: A technical interactive forums: 179–195.Search in Google Scholar

Lanthaler Ch. 2004. Lysimeter Stations and Soil Hydrology Measuring Sites in Europe – Purpose, Equipment, Research Results, Future Developments. A diploma thesis, The Faculty of Natural Sciences at the Karl-Franzens-University Graz, not published.Search in Google Scholar

Larsbo M., Jarvis N. 2006. Information content of measurements from tracer microlysimeter experiments designed for parameter identification in dual-permeability models. Journal of Hydrology, 325, 1–4: 273–287.10.1016/j.jhydrol.2005.10.020Search in Google Scholar

Maciejewski S., Maloszewski P., Stumpp C., Klotz D. 2006. Modelling of water flow through typical Bavarian soils (Germany) based on lysimeter experiments: 1. Estimation of hydraulic characteristics of the unsaturated zone. Hydrological Sciences Journal, 51, 2: 285–297.10.1623/hysj.51.2.285Search in Google Scholar

Macioszczyk T. 2002. Lysimeter [in:] J. Dowgiałło, A.S. Kleczkowski, T. Macioszczyk, A. Różkowski (eds.) Słownik hydrogeologiczny. Państwowy Instytut Geologiczny, Warszawa.Search in Google Scholar

Malek S., Martinson L., Sverdrup H. 2005. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the “SAFE” model. Environmental Pollution, 137: 568–573.10.1016/j.envpol.2005.01.041Search in Google Scholar

Maloszewski P., Maciejewski S., Stumpp C., Stichler W., Trimborn T., Klotz D. 2006. Modelling of water flow through typical Bavarian soils based on lysimeter experiments: 2 environmental deuterium transport. Hydrology Sciences Journal, 51: 298–313.10.1623/hysj.51.2.298Search in Google Scholar

Malterre F., Grebil G., Pierre J., Schiavon M. Trifluralin behaviour in soil: a microlysimeter study. Chemosphere, 34, 3: 447–454.10.1016/S0045-6535(96)00387-6Search in Google Scholar

Martins I., Faria R., Fabiano P., Dalri A., Oliverio C., Libardi L. 2017. Weighing lysimeters for greenhouse evapotraspiration measurements. IRRIGA, 22, 4: 715–722.10.15809/irriga.2017v22n4p715-722Search in Google Scholar

Meissner R., Prasad M., Laing G., Rinklebe J. 2010. Lysimeter application for measuring the water and solute fluxes with high precision. Current Science, 99, 5: 601–607.Search in Google Scholar

Meissner R., Rupp H., Schubert M. 2000. Novel lysimeter techniques — a basis for the improved investigation of water, gas, and solute transport in soils. Journal of Plant Nutrition and Soil Science, 163, 6: 603–608.10.1002/1522-2624(200012)163:6<603::AID-JPLN603>3.0.CO;2-KSearch in Google Scholar

Muller J.C. 1996. Un point sur… trente ans de lysimétrie en France (1960–1990). Une technique, un outil pour l’étude de l’énvironnement. INRA, Comifer, Paris.Search in Google Scholar

Nourani V., Andalib G., Dąbrowska D. 2017a. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds. Journal of Hydrology, 548: 170–183.10.1016/j.jhydrol.2017.03.002Search in Google Scholar

Nourani V., Mousavi S., Dabrowska D., Sadikoglu F. 2017b. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media. Journal of Hydrology, 548: 569–587.10.1016/j.jhydrol.2017.03.036Search in Google Scholar

OECD, 2000. Guidance Document for the Performance of Outdoor Monolith Lysimeter Studies. OECD Series on Testing and Assessment, 22: 26.Search in Google Scholar

Pazdro Z., Kozerski B. 1990. Hydrogeologia ogólna. Wydawnictwa Geologiczne, Warszawa.Search in Google Scholar

Plošek L., Elbl J., Lošák T., Kužel T., Kintl A., Juřička D., Kynický J., Martensson A., Brtnický M. 2017. Leaching of mineral nitrogen in the soil influenced by addition of compost and N-mineral fertilizer. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 67, 7: 607–614.10.1080/09064710.2017.1322632Search in Google Scholar

Polap D. 2018. Human-machine interaction in intelligent technologies using the augmented reality. Information Technology and Control, 47, 4: 691–703.10.5755/j01.itc.47.4.21602Search in Google Scholar

Polap D., Winnicka A., Serwata K., Kesik K., Wozniak M. 2018. An Intelligent System for Monitoring Skin Diseases. Sensors, 18, 8: 2552.10.3390/s18082552Search in Google Scholar

Reth S. 2016. Lysimeters – a Modern Tool to Investigate Transport Processes in Ecosystems. NAS International Workshop on Applying the Lysimeter Systems to Water and Nutrient Dynamics. At National Institute of Agricultural Sciences, Wanju, South Korea.Search in Google Scholar

Rey E., Weingartner R., Liniger H. 2014. Case study of a hillside lysimeter with realistic boundary conditions on slope and hillside in an inner alpine area, Switzerland. Geophysical Research Abstracts, 16, EGU2014-5065.Search in Google Scholar

Ruiz-Penalver L., Vera-Repullo J., Jimenez-Buendia M., Guzman I., Molina-Martinez J. 2015. Development of an innovative low cost weighing lysimeter for pottedplants: Application in lysimetric stations. Agricultural Water Management, 151: 103–113.10.1016/j.agwat.2014.09.020Search in Google Scholar

Sarga-Gaczynska M. 2007. Dynamika generowania ładunków zanieczyszczeń na składowiskach odpadów górniczych i jej wpływ na środowisko wodne. Stanislaw Staszic Academy of Mining and Metallurgy, Phd thesis, not published.Search in Google Scholar

Schoen R., Gaudet J.P., Bariac T. 1999. Preferential flow and solute transport in a large lysimeter, undercontrolled boundary conditions. Journal of Hydrology, 215: 70–81.10.1016/S0022-1694(98)00262-5Search in Google Scholar

Schwaerzel K., Bohl H. 2003. An easily installable groundwater lysimeter to determine water balance components and hydraulic properties of peat soils. Hydrology and Earth System Sciences, 7, 1: 23–32.10.5194/hess-7-23-2003Search in Google Scholar

Slezak R., Krzystek L., Ledakowicz S. 2015. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Management, 43: 293–299.10.1016/j.wasman.2015.06.017Search in Google Scholar

Słupik J. 1973. Zróżnicowanie spływu powierzchniowego na fliszowych stokach górskich. Dokumentacja Geograficzna, 2, IG PAN, Warszawa.Search in Google Scholar

Sołtysiak M., Blachnik M., Dąbrowska D. 2016. Machine-learning methods in the water reservoirs classification. Environmental & Socio-economic Studies, 4, 2: 34–42.10.1515/environ-2016-0010Search in Google Scholar

Sołtysiak M., Dąbrowska D. 2016. The smoothing methods used in assessing the influence of pollution sources on groundwater quality – a case study of metallurgical landfill in Lipówka (southern Poland). Environmental & Socio-economic Studies, 4, 4: 61–67.10.1515/environ-2016-0025Search in Google Scholar

Soltysiak M., Dąbrowska D., Jałowiecki K., Nourani V., 2018. A multi-method approach to groundwater risk assessment: A case study of a landfill in southern Poland. Geological Quarterly, 62, 2: 361–374.10.7306/gq.1411Search in Google Scholar

Soltysiak M., Dąbrowska D., Żarski T., Żyła Ł., 2017. Lysimeter research of steel work slags from the Katowice Steelwork (Southern Poland). SGEM 2017, Albena, 1: 513–520.10.5593/sgem2017/12/S02.066Search in Google Scholar

Stasko S., Chodacki M. 2014. Infiltracja do wód podziemnych na podstawie pomiarów lizymetrycznych w Górach Sowich. Przegląd Geologiczny, 62, 8: 414–419.Search in Google Scholar

Stumpp C., Maloszewski P., Stichler W., Maciejewski S. 2007. Quantification of the heterogeneity of the unsaturated zone based on environmental deuterium observed in lysimeter experiments. Hydrological Sciences Journal, 52, 4: 748–762.10.1623/hysj.52.4.748Search in Google Scholar

Stumpp C., Maloszewski P., Stichler W., Fank J. 2009. Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: Case study lysimeter station “Wagna” (Austria). Journal of Hydrology, 369, 1–2: 198–208.10.1016/j.jhydrol.2009.02.047Search in Google Scholar

Stumpp C., Stichler W., Kandolf M., Šimůnek J. 2012. Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: A long-term study using stable water isotopes. Vadose Zone Journal, 11, 1: 14.10.2136/vzj2011.0075Search in Google Scholar

Stumpp C., Malosewski P. 2010. Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotope δ18O. Journal of Hydrology, 394: 407–415.10.1016/j.jhydrol.2010.09.014Search in Google Scholar

Stumpp C., Stichler W., Maloszewski P. 2009. Application of the environmental isotope δ18O to study water flow in unsaturated soils planted with different crops: Case study of a weighable lysimeter from the research field in Neuherberg, Germany. Journal of Hydrology, 368: 68–78.10.1016/j.jhydrol.2009.01.027Search in Google Scholar

Sykut S. 1988. Dynamika procesu wymywania z gleb składników mineralnych w doświadczeniu lizymetrycznym (Phd thesis). IUNG Puławy, 59.Search in Google Scholar

Szczepanska J. 1987. Coal mine spoil tips as a source of the natural water environment pollution, Scientific Bulletins of Stanislaw Staszic Academy of Mining and Metallurgy, 1135.10.1016/B978-0-444-42876-9.50026-9Search in Google Scholar

Tarka R. 1997. Zasilanie wód podziemnych w górskich masywach krystalicznych na przykładzie Masywu Śnieżnika w Sudetach. Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław.Search in Google Scholar

Ucles O., Villagarcia L., Canton Y., Domingo F. 2013. Microlysimeter station for long term non-rainfall water input and evaporation studies. Agricultural and Forest Meteorology, 182–183: 13–20.10.1016/j.agrformet.2013.07.017Search in Google Scholar

Valtenana M., Nsillanpaab N., Setalaaa H. 2017. A large-scale lysimeter study of stormwater biofiltration under coldclimatic condition. Ecological Engineering, 100: 89–98.10.1016/j.ecoleng.2016.12.018Search in Google Scholar

Witczak S., Postawa A. 1993a. Ocena szybkości ługowania siarczków z płonych skał karbońskich deponowanych na składowiskach Górnośląskiego Zagłębia Węglowego na podstawie badań lizymetrycznych. Polska Akademia Nauk, Prace Mineralogiczne, 84.Search in Google Scholar

Witczak S., Postawa A. 1993b. The cinetics of sulphides oxidation in the coal mine spoils of the Upper Silesian Coal Basin. Pilot scale test. The 4th International Symposium on the Reclamation, Treatment and Utilization of Coal Mine Waste, Kraków.Search in Google Scholar

Zurek A. 2010. Wstępna ocena składowych naturalnego bilansu wodnego na podstawie obserwacji w lizymetrach. Przegląd Geologiczny, 58, 12: 1192–1197.Search in Google Scholar

Zurek A., Czop M. 2010. Modelowanie warunków przepływu i przekształceń składu chemicznego wód opadowych w trakcie procesu infiltracji, na przykładzie doświadczenia lizymetrycznego. Biuletyn Państwowego Instytutu Geologicznego, 442: 181–188.Search in Google Scholar

Zurek A., Moscicki W. 2017. Badanie strefy aeracji na stanowisku lizymetrycznym przy pomocy penetracyjnego profilowania oporności elektrycznej. Prace Geograficzne, 151: 121–132.10.4467/20833113PG.17.025.8037Search in Google Scholar

http://lysimeter.info/Search in Google Scholar

http://lysimeter.at/Search in Google Scholar

eISSN:
2354-0079
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, Geography, Atmospheric Science and Climatology, Life Sciences, Plant Science, Ecology