Open Access

Periaqueductal gray and emotions: the complexity of the problem and the light at the end of the tunnel, the magnetic resonance imaging


Cite

Abbadie C, Pan YX, Pasternak GW. Differential distribution in rat brain of mu opioid receptor carboxy terminal splice variants MOR-1C-like and MOR-1-like immunoreactivity: evidence for region-specific processing. J Comp Neurol 419, 244-256, 2000.10.1002/(SICI)1096-9861(20000403)419:2<244::AID-CNE8>3.0.CO;2-RSearch in Google Scholar

Adametz J, O’Leary JL. Experimental mutism resulting from periaqueductal lesions in cats. Neurology 9, 636-642, 1959.10.1212/WNL.9.10.63613791737Open DOISearch in Google Scholar

Adolphs R. The neurobiology of social cognition. Curr Opin Neurobiol 11, 231-239, 2001.10.1016/S0959-4388(00)00202-6Search in Google Scholar

Anderzhanova E, Kirmeier T, Wotjak CT. Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress 7, 47-56, 2017.10.1016/j.ynstr.2017.03.003Search in Google Scholar

Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS. The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29, 1123-1144, 2005.10.1016/j.neubiorev.2005.05.005Search in Google Scholar

Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 139, 785-813, 2013.10.1007/s00418-013-1081-1Search in Google Scholar

Bales KL. Parenting in Animals. Curr Opin Psychol 15, 93-98, 2017.10.1016/j.copsyc.2017.02.026Search in Google Scholar

Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17, 379-389, 1994.10.1016/0166-2236(94)90047-7Open DOISearch in Google Scholar

Bandler R, Keay KA, Floyd N, Price J. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53, 95-104, 2000.10.1016/S0361-9230(00)00313-0Search in Google Scholar

Barba-Muller E, Craddock S, Carmona S, Hoekzema E. Brain plasticity in pregnancy and the postpartum period: links to maternal caregiving and mental health. Arch Womens Ment Health 2018.10.1007/s00737-018-0889-zSearch in Google Scholar

Bartsch T, Knight YE, Goadsby PJ. Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception. Ann Neurol 56, 371-381, 2004.10.1002/ana.20193Search in Google Scholar

Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7, 309-338, 1984.10.1146/annurev.ne.07.030184.001521Open DOISearch in Google Scholar

Baslow MH. Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochem Int 40, 295-300, 2002.1179245810.1016/S0197-0186(01)00095-XSearch in Google Scholar

Beckett S, Marsden CA. The effect of central and systemic injection of the 5-HT1A receptor agonist 8-OHDPAT and the 5-HT1A receptor antagonist WAY100635 on periaqueductal grey-induced defence behaviour. J Psychopharmacol 11, 35-40, 1997.10.1177/0269881197011001119097891Search in Google Scholar

Benarroch EE. Periaqueductal gray: an interface for behavioral control. Neurology 78, 210-217, 2012.10.1212/WNL.0b013e31823fcdee22249496Open DOISearch in Google Scholar

Benedetti F, Carlino E, Pollo A. How placebos change the patient’s brain. Neuropsychopharmacology 36, 339-354, 2011.10.1038/npp.2010.81305551520592717Open DOISearch in Google Scholar

Bindra D. Emotion and behavior theory: current research in historical perspective. In Physiological Correlates of Emotion, Reed Elsevier. ed., Perry Black. Academic Press, USA, 1970.10.1016/B978-0-12-102850-3.50007-4Search in Google Scholar

Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120, 8-15, 2006.10.1016/j.pain.2005.08.02716364549Search in Google Scholar

Blakemore RL, Rieger SW, Vuilleumier P. Negative emotions facilitate isometric force through activation of prefrontal cortex and periaqueductal gray. Neuroimage 124, 627-640, 2016.10.1016/j.neuroimage.2015.09.02926400014Search in Google Scholar

Blanchard C, Blanchard R, Fellous JM, Guimaraes FS, Irwin W, Ledoux JE, McGaugh JL, Rosen JB, Schenberg LC, Volchan E, Da Cunha C. The brain decade in debate: III. Neurobiology of emotion. Braz J Med Biol Res 34, 283-293, 2001.10.1590/S0100-879X200100030000111262578Open DOISearch in Google Scholar

Bodnar RJ. Endogenous opiates and behavior: 2011. Peptides 38, 463-522, 2012.10.1016/j.peptides.2012.09.027Search in Google Scholar

Boissy A, Arnould C, Chaillou E, Desire L, Duvaux-Ponter C, Greiveldinger L, Leterrier C, Richard S, Roussel S, Saint-Dizier H, Meunier-Salaun MC, Valance D, Veissier I. Emotions and cognition: A new approach to animal welfare. Anim Welf 16, 37-43, 2007.Search in Google Scholar

Bombardi C. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex. Front Pharmacol 5, 68, 2014.10.3389/fphar.2014.00068Search in Google Scholar

Brent LJ, Chang SW, Gariepy JF, Platt ML. The neuroethology of friendship. Ann N Y Acad Sci 1316, 1-17, 2014.10.1111/nyas.12315Search in Google Scholar

Buhle JT, Kober H, Ochsner KN, Mende-Siedlecki P, Weber J, Hughes BL, Kross E, Atlas LY, McRae K, Wager TD. Common representation of pain and negative emotion in the midbrain periaqueductal gray. Soc Cogn Affect Neurosci 8, 609-616, 2013.10.1093/scan/nss038Search in Google Scholar

Buonanotte F, Schurrer C, Carpinella M, Surur A, Marangoni A, Palacio S, Forteza M, Fernandez R, Enders J. [Alteration of the antinociceptive systems in chronic daily headaches]. Rev Neurol 43, 263-267, 2006.1694142310.33588/rn.4305.2005706Search in Google Scholar

Campos AC, de Paula Soares V, Carvalho MC, Ferreira FR, Vicente MA, Brandao ML, Zuardi AW, Zangrossi H Jr, Guimaraes FS. Involvement of serotonin-mediated neurotransmission in the dorsal periaqueductal gray matter on cannabidiol chronic effects in panic-like responses in rats. Psychopharmacology (Berl) 226, 13-24, 2013.10.1007/s00213-012-2878-7Search in Google Scholar

Cannon WB. The James-Lange theory of emotions: A critical examination and an alternative theory. Am J Psychol 39, 106-124, 1927.10.2307/1415404Search in Google Scholar

Carrive P, Leung P, Harris J, Paxinos G. Conditioned fear to context is associated with increased Fos expression in the caudal ventrolateral region of the midbrain periaqueductal gray. Neuroscience 78, 165-177, 1997.10.1016/S0306-4522(97)83047-39135098Open DOISearch in Google Scholar

Carstens E, Hartung M, Stelzer B, Zimmermann M. Suppression of a hind limb flexion withdrawal reflex by microinjection of glutamate or morphine into the periaqueductal gray in the rat. Pain 43, 105-112, 1990.198053510.1016/0304-3959(90)90055-ISearch in Google Scholar

Chiou RJ, Kuo CC, Yen CT. Comparisons of terminal densities of cardiovascular function-related projections from the amygdala subnuclei. Auton Neurosci 181, 21-30, 2014.10.1016/j.autneu.2013.12.00224412638Search in Google Scholar

Clements JR, Beitz AJ, Fletcher TF, Mullett MA. Immunocytochemical localization of serotonin in the rat periaqueductal gray: a quantitative light and electron microscopic study. J Comp Neurol 236, 60-70, 1985.10.1002/cne.902360106Search in Google Scholar

Coutinho MR, Menescal-de-Oliveira L. Role of homocysteic acid in the guinea pig (Cavia porcellus) anterior cingulate cortex in tonic immobility and the influence of NMDA receptors on the dorsal PAG. Behav Brain Res 208, 237-242, 2010.10.1016/j.bbr.2009.11.047Search in Google Scholar

Dampney R. Emotion and the cardiovascular system: Postulated role of inputs from the medial prefrontal cortex to the dorsolateral periaqueductal gray. Front Neurosci 12, 343, 2018.10.3389/fnins.2018.00343Search in Google Scholar

Dantzer R. Les emotions. Presses Universitaires de France,”Que sais-je?”, 2002a.10.3917/puf.dantz.2002.01Search in Google Scholar

Dantzer R. Can farm animal welfare be understood without taking into account the issues of emotion and cognition? J Anim Sci 80, E1-E9, 2002b.Search in Google Scholar

Darwin C. The Expression of the Emotions in Man and Animals. 1872.10.1037/10001-000Open DOISearch in Google Scholar

Davis PJ, Zhang SP, Winkworth A, Bandler R. Neural control of vocalization: respiratory and emotional influences. J Voice 10, 23-38, 1996.10.1016/S0892-1997(96)80016-6Search in Google Scholar

de Almeida J, Palacios JM, Mengod G. Distribution of 5-HT and DA receptors in primate prefrontal cortex: implications for pathophysiology and treatment. Prog Brain Res 172, 101-115, 2008.10.1016/S0079-6123(08)00905-9Search in Google Scholar

Decety J, Michalska KJ, Akitsuki Y. Who caused the pain? An fMRI investigation of empathy and intentionality in children. Neuropsychologia 46, 2607-2614, 2008.10.1016/j.neuropsychologia.2008.05.0261857326618573266Open DOISearch in Google Scholar

Decety J, Michalska KJ, Akitsuki Y, Lahey BB. Atypical empathic responses in adolescents with aggressive conduct disorder: a functional MRI investigation. Biol Psychol 80, 203-211, 2009.1894023010.1016/j.biopsycho.2008.09.004281931018940230Search in Google Scholar

Decety J, Echols S, Correll J. The blame game: the effect of responsibility and social stigma on empathy for pain. J Cogn Neurosci 22, 985-997, 2010.10.1162/jocn.2009.2126619425830Search in Google Scholar

de Menezes RC, Zaretsky DV, Fontes MA, DiMicco JA. Microinjection of muscimol into caudal periaqueductal gray lowers body temperature and attenuates increases in temperature and activity evoked from the dorsomedial hypothalamus. Brain Res 1092, 129-137, 2006.10.1016/j.brainres.2006.03.080Search in Google Scholar

De Oca BM, DeCola JP, Maren S, Fanselow MS. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J Neurosci 18, 3426-3432, 1998.10.1523/JNEUROSCI.18-09-03426.1998Open DOISearch in Google Scholar

Depaulis A, Bandler R, Vergnes M. Characterization of pretentorial periaqueductal gray matter neurons mediating intraspecific defensive behaviors in the rat by microinjections of kainic acid. Brain Res 486, 121-132, 1989.10.1016/0006-8993(89)91284-5Search in Google Scholar

DeSantana JM, Da Silva LF, De Resende MA, Sluka KA. Transcutaneous electrical nerve stimulation at both high and low frequencies activates ventrolateral periaqueductal grey to decrease mechanical hyperalgesia in arthritic rats. Neuroscience 163, 1233-1241, 2009.10.1016/j.neuroscience.2009.06.056395525919576962Search in Google Scholar

Dunckley P, Wise RG, Fairhurst M, Hobden P, Aziz Q, Chang L, Tracey I. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J Neurosci 25, 7333-7341, 2005.10.1523/JNEUROSCI.1100-05.200516093383672529716093383Open DOISearch in Google Scholar

Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, Buchel C. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533-543, 2009.1970963410.1016/j.neuron.2009.07.01419709634Search in Google Scholar

Ezra M, Faull OK, Jbabdi S, Pattinson KT. Connectivity-based segmentation of the periaqueductal gray matter in human with brainstem optimized diffusion MRI. Hum Brain Mapp 36, 3459-3471, 2015.10.1002/hbm.22855475513526138504Search in Google Scholar

Fairhurst M, Wiech K, Dunckley P, Tracey I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101-110, 2007.10.1016/j.pain.2006.09.00117070996Search in Google Scholar

Fairhurst M, Fairhurst K, Berna C, Tracey I. An fMRI study exploring the overlap and differences between neural representations of physical and recalled pain. PLoS One 7, e48711, 2012.2311909310.1371/journal.pone.0048711348531723119093Search in Google Scholar

Farmer DG, Bautista TG, Jones SE, Stanic D, Dutschmann M. The midbrain periaqueductal grey has no role in the generation of the respiratory motor pattern, but provides command function for the modulation of respiratory activity. Respir Physiol Neurobiol 204, 14-20, 2014.10.1016/j.resp.2014.07.01125058161Search in Google Scholar

Faull OK, Jenkinson M, Clare S, Pattinson KT. Functional subdivision of the human periaqueductal grey in respiratory control using 7 tesla fMRI. Neuroimage 113, 356-364, 2015.10.1016/j.neuroimage.2015.02.026Search in Google Scholar

Figueira RJ, Peabody MF, Lonstein JS. Oxytocin receptor activity in the ventrocaudal periaqueductal gray modulates anxiety-related behavior in postpartum rats. Behav Neurosci 122, 618-628, 2008.10.1037/0735-7044.122.3.618Search in Google Scholar

Freeman SM, Walum H, Inoue K, Smith AL, Goodman MM, Bales KL, Young LJ. Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus). Neuroscience 273, 12-23, 2014.10.1016/j.neuroscience.2014.04.055Search in Google Scholar

Furl N. Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas. Front Hum Neurosci 9, 253, 2015.10.3389/fnhum.2015.00253Search in Google Scholar

Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain 154 (Suppl 1), S29-S43, 2013.10.1016/j.pain.2013.09.001Search in Google Scholar

Gaudin S, Chaillou E, Wycke MA, Cornilleau F, Moussu C, Calandreau L, Laine AL, Nowak R. All bonds are not alike: A psychoendocrine evaluation of infant attachment. Dev Psychobiol 60, 90-103. 2018.10.1002/dev.21552Search in Google Scholar

Gregg TR, Siegel A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry. 25, 91-140, 2001.10.1016/S0278-5846(00)00150-0Open DOISearch in Google Scholar

Guesdon V, Meurisse M, Chesneau D, Picard S, Levy F, Chaillou E. Behavioral and endocrine evaluation of the stressfulness of single-pen housing compared to group-housing and social isolation conditions. Physiol Behav 147, 63-70, 2015.10.1016/j.physbeh.2015.04.01325865708Search in Google Scholar

Harper DE, Ichesco E, Schrepf A, Hampson JP, Clauw DJ, Schmidt-Wilcke T, Harris RE, Harte SE. Resting functional connectivity of the periaqueductal gray is associated with normal inhibition and pathological facilitation in conditioned pain modulation. J Pain 19, 635 e1-635 e15, 2018.2936060810.1016/j.jpain.2018.01.001597206729360608Search in Google Scholar

Holstege G, Huynh HK. Brain circuits for mating behavior in cats and brain activations and de-activations during sexual stimulation and ejaculation and orgasm in humans. Horm Behav 59, 702-707, 2011.10.1016/j.yhbeh.2011.02.00821352827Search in Google Scholar

Hopkins DA, Holstege G. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32, 529-547, 1978.10.1007/BF00239551Search in Google Scholar

Hosobuchi Y. Dorsal periaqueductal gray-matter stimulation in humans. Pacing Clin Electrophysiol 10, 213-216, 1987.10.1111/j.1540-8159.1987.tb05951.xSearch in Google Scholar

Jansen AS, Farkas E, Mac Sams J, Loewy AD. Local connections between the columns of the periaqueductal gray matter: a case for intrinsic neuromodulation. Brain Res 784, 329-336, 1998.10.1016/S0006-8993(97)01293-6Search in Google Scholar

Jurgens U. The role of the periaqueductal grey in vocal behaviour. Behav Brain Res 62, 107-117, 1994.10.1016/0166-4328(94)90017-5Search in Google Scholar

Keay KA, Bandler R. Distinct central representations of inescapable and escapable pain: observations and speculation. Exp Physiol 87, 275-279, 2002.10.1113/eph870235511856974Search in Google Scholar

Kelly AH, Beaton LE, Magoun HW. A midbrain mechanism for facio-vocal activity. J Neurophysiol 9, 181-189, 1946.10.1152/jn.1946.9.3.1812102816121028161Open DOISearch in Google Scholar

Kirouac G. Cognition et emotions. Les presses de l’universite Laval, 223, 1998.Search in Google Scholar

Klein MO, Cruz Ade M, Machado FC, Picolo G, Canteras NS, Felicio LF. Periaqueductal gray mu and kappa opioid receptors determine behavioral selection from maternal to predatory behavior in lactating rats. Behav Brain Res 274, 62-72, 2014.10.1016/j.bbr.2014.08.00825116253Search in Google Scholar

Kyuhou S, Gemba H. Two vocalization-related subregions in the midbrain periaqueductal gray of the guinea pig. Neuroreport 9, 1607-1610, 1998.10.1097/00001756-199805110-0006496314749631474Open DOISearch in Google Scholar

La Cesa S, Tinelli E, Toschi N, Di Stefano G, Collorone S, Aceti A, Francia A, Cruccu G, Truini A, Caramia F. fMRI pain activation in the periaqueductal gray in healthy volunteers during the cold pressor test. Magn Reson Imaging 32, 236-240, 2014.10.1016/j.mri.2013.12.00324468081Open DOISearch in Google Scholar

Laprairie JL, Murphy AZ. Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front Behav Neurosci 3, 31, 2009.10.3389/neuro.08.031.2009276678319862348Search in Google Scholar

LeDoux JE, Iwata J, Cicchetti P, Reis DJ. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8, 2517-2529, 1988.285484210.1523/JNEUROSCI.08-07-02517.1988Search in Google Scholar

Lei J, Sun T, Lumb BM, You HJ. Roles of the periaqueductal gray in descending facilitatory and inhibitory controls of intramuscular hypertonic saline induced muscle nociception. Exp Neurol 257, 88-94, 2014.10.1016/j.expneurol.2014.04.019Search in Google Scholar

Leman S, Dielenberg RA, Carrive P. Effect of dorsal periaqueductal gray lesion on cardiovascular and behavioural responses to contextual conditioned fear in rats. Behav Brain Res 143, 169-176, 2003.10.1016/S0166-4328(03)00033-0Search in Google Scholar

Leventhal H, Scherer K. The relationship of emotion to cognition: A functional approach to a semantic controversy. Cogn Emot 1, 3-28, 1987.10.1080/02699938708408361Search in Google Scholar

Leventhal H, Patrick-Miller L. Emotions and physical illness: Causes and indicators of vulnerability. Handbook of Emotions, 2nd ed. M. Lewis & J. M. Haviland-Jones, New York, Guilford Press, 2000.Search in Google Scholar

Levy F. Neurobiological mechanisms involved in recognition of olfactory signature of the young in sheep. J Soc Biol 196, 77-83, 2002.10.1051/jbio/2002196010077Search in Google Scholar

Linnman C, Borsook D. Completing the Pain Circuit: Recent Advances in Imaging Pain and Inflammation beyond the Central Nervous System. Rambam Maimonides Med J 4, e0026, 2013.10.5041/RMMJ.10133Search in Google Scholar

Lonstein JS, Stern JM. Somatosensory contributions to c-fos activation within the caudal periaqueductal gray of lactating rats: effects of perioral, rooting, and suckling stimuli from pups. Horm Behav 32, 155-166, 1997.10.1006/hbeh.1997.1416Open DOISearch in Google Scholar

Lonstein JS, Stern JM. Site and behavioral specificity of periaqueductal gray lesions on postpartum sexual, maternal, and aggressive behaviors in rats. Brain Res 804, 21-35, 1998.10.1016/S0006-8993(98)00642-8Search in Google Scholar

Lonstein JS, Simmons DA, Stern JM. Functions of the caudal periaqueductal gray in lactating rats: kyphosis, lordosis, maternal aggression, and fearfulness. Behav Neurosci 112, 1502-1518, 1998.10.1037/0735-7044.112.6.1502Search in Google Scholar

Loyd DR, Murphy AZ. The role of the periaqueductal gray in the modulation of pain in males and females: are the anatomy and physiology really that different? Neural Plast 2009, 462879, 2009.10.1155/2009/462879263344919197373Search in Google Scholar

Maddock RJ, Garrett AS, Buonocore MH. Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Hum Brain Mapp 18, 30-41, 2003.10.1002/hbm.10075Search in Google Scholar

Martinez RC, de Oliveira AR, Brandao ML. Conditioned and unconditioned fear organized in the periaqueductal gray are differentially sensitive to injections of muscimol into amygdaloid nuclei. Neurobiol Learn Mem 85, 58-65, 2006.10.1016/j.nlm.2005.08.007Open DOISearch in Google Scholar

Mauss IB, Robinson MD. Measures of emotion: A review. Cogn Emot 23, 209-237, 2009.10.1080/02699930802204677Open DOISearch in Google Scholar

McNaughton N. Biology and Emotion (Problems in the Behavioural Sciences). Cambridge, Cambridge University Press, 1989.Search in Google Scholar

Menant O, Andersson F, Zelena D, Chaillou E. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals. J Chem Neuroanat 77, 110-120, 2016a.10.1016/j.jchemneu.2016.06.003Search in Google Scholar

Menant O, Destrez A, Deiss V, Boissy A, Delagrange P, Calandreau L, Chaillou E. Regulation des emotions chez l’animal d’elevage : focus sur les acteurs neurobiologiques. INRA Prod Anim 29, 241-254, 2016b.10.20870/productions-animales.2016.29.4.2966Search in Google Scholar

Menant O, Prima MC, Morisse M, Cornilleau F, Moussu C, Gautier A, Blanchon H, Meurisse M, Delagrange P, Tillet Y, Chaillou E. First evidence of neuronal connections between specific parts of the periaqueductal gray (PAG) and the rest of the brain in sheep: placing the sheep PAG in the circuit of emotion. Brain Struct Funct 223, 3297-3316, 2018.10.1007/s00429-018-1689-ySearch in Google Scholar

Mobbs D, Petrovic P, Marchant JL, Hassabis D, Weiskopf N, Seymour B, Dolan RJ, Frith CD. When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 317, 1079-1083, 2007.10.1126/science.1144298Search in Google Scholar

Mobbs D, Yu R, Rowe JB, Eich H, FeldmanHall O, Dalgleish T. Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc Natl Acad Sci U S A 107, 20582-20586, 2010.10.1073/pnas.1009076107Search in Google Scholar

Monassi CR, Leite-Panissi CR, Menescal-de-Oliveira L. Ventrolateral periaqueductal gray matter and the control of tonic immobility. Brain Res Bull 50, 201-218, 1999.10.1016/S0361-9230(99)00192-6Open DOISearch in Google Scholar

Monteillet-Agius G, Fein J, Anton B, Evans CJ. ORL-1 and mu opioid receptor antisera label different fibers in areas involved in pain processing. J Comp Neurol 399, 373-383, 1998.10.1002/(SICI)1096-9861(19980928)399:3<373::AID-CNE6>3.0.CO;2-YSearch in Google Scholar

Morgan MM, Whitney PK, Gold MS. Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray. Brain Res 804, 159-166, 1998.10.1016/S0006-8993(98)00669-6Search in Google Scholar

Morgan MM, Carrive P. Activation of the ventrolateral periaqueductal gray reduces locomotion but not mean arterial pressure in awake, freely moving rats. Neuroscience 102, 905-910, 2001.10.1016/S0306-4522(00)00513-311182252Open DOISearch in Google Scholar

Moskowitz AS, Goodman RR. Autoradiographic analysis of mu1, mu2, and delta opioid binding in the central nervous system of C57BL/6BY and CXBK (opioid receptor-deficient) mice. Brain Res 360, 108-116, 1985.10.1016/0006-8993(85)91226-0Search in Google Scholar

Motta SC, Carobrez AP, Canteras NS. The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 76, 39-47, 2017.10.1016/j.neubiorev.2016.10.01228434586Search in Google Scholar

Moura LM, Canteras NS, Sukikara MH, Felicio LF. Morphine infusions into the rostrolateral periaqueductal gray affect maternal behaviors. Braz J Med Biol Res 43, 899-905, 2010.10.1590/S0100-879X20100075000852080297720802977Open DOISearch in Google Scholar

Najafi M, Kinnison J, Pessoa L. Dynamics of Intersubject Brain Networks during Anxious Anticipation. Front Hum Neurosci 11, 552, 2017.10.3389/fnhum.2017.00552570247929209184Search in Google Scholar

Nakamura T, Tomida M, Yamamoto T, Ando H, Takamata T, Kondo E, Kurasawa I, Asanuma N. The endogenous opioids related with antinociceptive effects induced by electrical stimulation into the amygdala. Open Dent J 7, 27-35, 2013.10.2174/1874210601307010027360694923539535Search in Google Scholar

Nashold BS Jr., Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg 31, 172-186, 1969.10.3171/jns.1969.31.2.017248961304896130Open DOISearch in Google Scholar

Noriuchi MY, Kikuchi Y, Senoo A. The functional neuroanatomy of maternal love: mother’s response to infant’s attachment behaviors. Biol Psychiatry 63, 415-423, 2008.10.1016/j.biopsych.2007.05.01817686467Open DOISearch in Google Scholar

Nunes-de-Souza V, Nunes-de-Souza R, Rodgers RJ, Canto-de-Souza A. Blockade of 5-HT(2) receptors in the periaqueductal grey matter (PAG) abolishes the anxiolytic-like effect of 5-HT(1A) receptor antagonism in the median raphe nucleus in mice. Behav Brain Res 225, 547-553, 2011.10.1016/j.bbr.2011.07.05621839779Search in Google Scholar

O’Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 519, 3599-5639, 2011.10.1002/cne.22735Search in Google Scholar

Oka T, Tsumori T, Yokota S, Yasui Y. Neuroanatomical and neurochemical organization of projections from the central amygdaloid nucleus to the nucleus retroambiguus via the periaqueductal gray in the rat. Neurosci Res 62, 286-298, 2008.1894815010.1016/j.neures.2008.10.004Search in Google Scholar

Osorio-Garcia MI, Croitor Sava AR, Sima DM, Nielsen FU, Himmelreich U, Van Huffel S. Quantification Improvements of 1H MRS Signals. In: Magnetic Resonance Spectroscopy (Ed. Dong-Hyun Kim), pp. 3-28, IntechOpen, London, 2012.Search in Google Scholar

Paradiso S, Johnson DL, Andreasen NC, O’Leary DS, Watkins GL, Ponto LL, Hichwa RD. Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry 156, 1618-1629, 1999.10.1176/ajp.156.10.1618Search in Google Scholar

Parsons CE, Young KS, Stein A, Kringelbach ML. Intuitive parenting: understanding the neural mechanisms of parents’ adaptive responses to infants. Curr Opin Psychol 15, 40-44, 2017.10.1016/j.copsyc.2017.02.010Search in Google Scholar

Pereira EA, Lu G, Wang S, Schweder PM, Hyam JA, Stein JF, Paterson DJ, Aziz TZ, Green AL. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp Neurol 223, 574-581, 2010.10.1016/j.expneurol.2010.02.004Search in Google Scholar

Pesini P, Pego-Reigosa R, Tramu G, Covenas R. Distribution of alpha-neoendorphin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 22, 251-262, 2001.10.1016/S0891-0618(01)00136-311719022Open DOISearch in Google Scholar

Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175-187, 2005.10.1016/j.neuron.2005.09.02516242399Open DOISearch in Google Scholar

Price DD. Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Interv 2, 392- 403, 339, 2002.1499341510.1124/mi.2.6.39214993415Search in Google Scholar

Randall WL. The behavior of cats (Felis catus L.) with lesions in the caudal midbrain region. Behaviour 23, 107-134, 1964.10.1163/156853964X00102Open DOISearch in Google Scholar

Rea K, Roche M, Finn DP. Modulation of conditioned fear, fear-conditioned analgesia, and brain regional c-Fos expression following administration of muscimol into the rat basolateral amygdala. J Pain 12, 712-721, 2011.10.1016/j.jpain.2010.12.01021459678Open DOISearch in Google Scholar

Reynolds WJ, Scott B. Empathy: a crucial component of the helping relationship. J Psychiatr Ment Health Nurs 6, 363-370, 1999.10.1046/j.1365-2850.1999.00228.xSearch in Google Scholar

Rizvi TA, Ennis M, Behbehani MM, Shipley MT. Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303, 121-131, 1991.10.1002/cne.903030111Search in Google Scholar

Roeling TA, Veening JG, Peters JP, Vermelis ME, Nieuwenhuys R. Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience 56, 199-225, 1993.10.1016/0306-4522(93)90574-YOpen DOISearch in Google Scholar

Roxo MR, Franceschini PR, Zubaran C, Kleber FD, Sander JW. The limbic system conception and its historical evolution. ScientificWorldJournal 11, 2428-2441, 2011.2219467310.1100/2011/157150Search in Google Scholar

Roy M, Shohamy D, Daw N, Jepma M, Wimmer GE, Wager TD. Representation of aversive prediction errors in the human periaqueductal gray. Nat Neurosci 17, 1607-1612, 2014.2528261410.1038/nn.3832Search in Google Scholar

Russell J, Mahrabian A. Evidence for a Three-Factor Theory of Emotions. J Res Pers 11, 273-294, 1977.10.1016/0092-6566(77)90037-XOpen DOISearch in Google Scholar

Saavedra JM, Palkovits M, Brownstein MJ, Axelrod J. Serotonin distribution in the nuclei of the rat hypothalamus and preoptic region. Brain Res 77, 157-165, 1974.10.1016/0006-8993(74)90812-9Search in Google Scholar

Sampaio KN, Mauad H, Biancardi VC, Barros JL, Amaral FT, Schenberg LC, Vasquez EC. Cardiovascular changes following acute and chronic chemical lesions of the dorsal periaqueductal gray in conscious rats. J Auton Nerv Syst 76, 99-107, 1999.10.1016/S0165-1838(99)00015-6Search in Google Scholar

Satpute AB, Wager TD, Cohen-Adad J, Bianciardi M, Choi JK, Buhle JT, Wald LL, Barrett LF. Identification of discrete functional subregions of the human periaqueductal gray. Proc Natl Acad Sci U S A, 110, 17101-17106, 2013.10.1073/pnas.1306095110380104624082116Search in Google Scholar

Schachter S, Singer JE. Cognitive, social, and physiological determinants of emotional state. Psychol Rev 69, 379-399, 1962.10.1037/h004623414497895Search in Google Scholar

Schenberg LC, Brandao CA, Vasquez EC. Role of periaqueductal gray matter in hypertension in spontaneously hypertensive rats. Hypertension 26, 1125-1128, 1995.10.1161/01.HYP.26.6.1125Open DOISearch in Google Scholar

Sebe F, Aubin T, Boue A, Poindron P. Mother-young vocal communication and acoustic recognition promote preferential nursing in sheep. J Exp Biol 211, 3554-3562, 2008.10.1242/jeb.01605518978219Search in Google Scholar

Shepherd SV, Freiwald WA. Functional networks for social communication in the Macaque Monkey. Neuron 99, 413-420, e3, 2018.10.1016/j.neuron.2018.06.027644910230017395Search in Google Scholar

Sela VR, Biesdorf C, Ramos DH, Zangrossi H Jr, Graeff FG, Audi EA. Serotonin-1A receptors in the dorsal periaqueductal gray matter mediate the panicolytic-like effect of pindolol and paroxetine combination in the elevated T-maze. Neurosci Lett 495, 63-66, 2011.10.1016/j.neulet.2011.03.04021421022Search in Google Scholar

Skultety FM. The behavioral effects of destructive lesions of the periaqueductal gray matter in adult cats. J Comp Neurol 110, 337-365, 1958.10.1002/cne.90110030313664839Search in Google Scholar

Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res 2, 133-146, 1976.10.1002/jnr.490020204950678950678Open DOISearch in Google Scholar

Stewart-Williams S, Podd J. The placebo effect: dissolving the expectancy versus conditioning debate. Psychol Bull 130, 324-340, 2004.10.1037/0033-2909.130.2.32414979775Search in Google Scholar

Stone E, Coote JH, Allard J, Lovick TA. GABAergic control of micturition within the periaqueductal grey matter of the male rat. J Physiol 589, 2065-2078, 2011.10.1113/jphysiol.2010.202614309060421486804Search in Google Scholar

Subramanian HH, Balnave RJ, Holstege G. The midbrain periaqueductal gray control of respiration. J Neurosci 28, 12274-12283, 2008.10.1523/JNEUROSCI.4168-08.200819020021667170619020021Open DOISearch in Google Scholar

Sukikara MH, Mota-Ortiz SR, Baldo MV, Felicio LF, Canteras NS. The periaqueductal gray and its potential role in maternal behavior inhibition in response to predatory threats. Behav Brain Res 209, 226-233, 2010.10.1016/j.bbr.2010.01.04820138922Search in Google Scholar

Swanson LW, McKellar S. The distribution of oxytocin- and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol 188, 87-106, 1979.10.1002/cne.901880108115910Search in Google Scholar

Takasaki A, Hui M, Sasaki M. Is the periaqueductal gray an essential relay center for the micturition reflex pathway in the cat? Brain Res 1317, 108-115, 2010.10.1016/j.brainres.2009.12.05720044981Search in Google Scholar

Tasker RR. Identification of pain processing systems by electrical stimulation of the brain. Hum Neurobiol 1, 261- 272, 1982.Search in Google Scholar

Teodorov E, Bernardi MM, Ferrari MF, Fior-Chadi DR, Felicio LF. Plasticity of opioid receptors in the female periaqueductal gray: multiparity-induced increase in the activity of genes encoding for mu and kappa receptors and a post-translational decrease in delta receptor expression. J Mol Neurosci 43, 175-181, 2011.10.1007/s12031-010-9407-020574683Open DOISearch in Google Scholar

Turner EA. Cerebral control of respiration. Brain 77, 448-486, 1954.10.1093/brain/77.3.44813208881Search in Google Scholar

van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J 39, 527-540, 2010.10.1007/s00249-009-0517-y284127519680645Search in Google Scholar

Veissier I, Boissy A. Stress and welfare: two complementary concepts that are intrinsically related to the animal’s point of view. Physiol Behav 92, 429-433, 2007.10.1016/j.physbeh.2006.11.00817182067Open DOISearch in Google Scholar

Vianna DML, Graeff FG, Landeira-Fernandez J, Brandao ML. Lesion of the ventral periaqueductal gray reduces conditioned fear but does not change freezing by stimulation of the dorsal periaqueductal gray. Learn Mem 8, 164-169, 2001.1139063610.1101/lm.3610131137311390636Search in Google Scholar

Vianna DM, Brandao ML. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz J Med Biol Res 36, 557-566, 2003.10.1590/S0100-879X200300050000212715074Open DOISearch in Google Scholar

Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placeboinduced changes in FMRI in the anticipation and experience of pain. Science 303, 1162-1167, 2004.10.1126/science.109306514976306Search in Google Scholar

Wager TD, van Ast VA, Hughes BL, Davidson ML, Lindquist MA, Ochsner KN. Brain mediators of cardiovascular responses to social threat, part II: Prefrontal-subcortical pathways and relationship with anxiety. Neuroimage 47, 836-851, 2009.10.1016/j.neuroimage.2009.05.044416988019465135Open DOISearch in Google Scholar

Walker P, Carrive P. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience 116, 897-912, 2003.10.1016/S0306-4522(02)00744-3Search in Google Scholar

Wiedenmayer CP, Barr GA. Mu opioid receptors in the ventrolateral periaqueductal gray mediate stress-induced analgesia but not immobility in rat pups. Behav Neurosci 114, 125-136, 2000.10.1037/0735-7044.114.1.125Search in Google Scholar

Wu D, Wang S, Stein JF, Aziz TZ, Green AL. Reciprocal interactions between the human thalamus and periaqueductal gray may be important for pain perception. Exp Brain Res 232, 527-534, 2014.10.1007/s00221-013-3761-4Search in Google Scholar

Xavier CH, Ianzer D, Lima AM, Marins FR, Pedrino GR, Vaz G, Menezes GB, Nalivaiko E, Fontes MA. Excitatory amino acid receptors mediate asymmetry and lateralization in the descending cardiovascular pathways from the dorsomedial hypothalamus. PLoS One 9, e112412, 2014.2539788410.1371/journal.pone.0112412Search in Google Scholar

Yoshida W, Seymour B, Koltzenburg M, Dolan RJ. Uncertainty increases pain: evidence for a novel mechanism of pain modulation involving the periaqueductal gray. J Neurosci 33, 5638-5646, 2013.2353607810.1523/JNEUROSCI.4984-12.2013Search in Google Scholar

Yoshimura R, Kiyama H, Kimura T, Araki T, Maeno H, Tanizawa O, Tohyama M. Localization of oxytocin receptor messenger ribonucleic acid in the rat brain. Endocrinology 133, 1239-1246, 1993.10.1210/endo.133.3.8396014Search in Google Scholar

Young RF, Kroening R, Fulton W, Feldman RA, Chambi I. Electrical stimulation of the brain in treatment of chronic pain. Experience over 5 years. J Neurosurg 62, 389-396, 1985.10.3171/jns.1985.62.3.0389Search in Google Scholar

Young KS, Parsons CE, Stein A, Vuust P, Craske MG, Kringelbach ML. The neural basis of responsive caregiving behaviour: Investigating temporal dynamics within the parental brain. Behav Brain Res 325, 105-116, 2017.10.1016/j.bbr.2016.09.012Search in Google Scholar

Yu CX, Li B, Xu YK, Ji TT, Li L, Zhao CJ, Chen L, Zhuo ZZ. Altered functional connectivity of the periaqueductal gray in chronic neck and shoulder pain. Neuroreport 28, 720-725, 2017.2857492710.1097/WNR.0000000000000819Search in Google Scholar

Zhang SP, Bandler R, Carrive P. Flight and immobility evoked by excitatory amino acid microinjection within distinct parts of the subtentorial midbrain periaqueductal gray of the cat. Brain Res 520, 73-82, 1990.10.1016/0006-8993(90)91692-ASearch in Google Scholar

eISSN:
1336-0329
Language:
English