Open Access

Dampening of neurotransmitter action: molecular similarity within the melatonin structure


Cite

Banach M, Gurdzie E, Jedrych M, Borowicz KK. Melatonin in experimental seizures and epilepsy. Pharmacol Rep 63, 1-11, 2011.2144160610.1016/S1734-1140(11)70393-0Search in Google Scholar

Benleulmi-Chaachoua A, Chen L, Sokolina K, Sokolina K, Wong V, Jurisca I, Emerit MB, Darmon M, Espin A, Stagljar I, Tafelmeyer P, Zamponi GW, Delagrange P, Maurice P, Jockers R. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 60, 95-108, 2016.10.1111/jpi.12294Search in Google Scholar

Binfare RW, Mantovani M, Budni J, Santos AR, Rodrigues AL. Involvement of dopamine receptors in the antidepressant- like effect of melatonin in the tail suspension test. Eur J Pharmacol 638, 78-83, 2010.10.1016/j.ejphar.2010.04.011Search in Google Scholar

Bubenik GA. Thirty four years since the discovery of gastrointestinal melatonin. J Physiol Pharmacol 59 Suppl 2, 33-51, 2008.Search in Google Scholar

Chan KH, Wong YH. A molecular and chemical perspective in defining melatonin receptor subtype selectivity. Int J Mol Sci 14, 14385-14406, 2013.10.3390/ijms140918385Open DOISearch in Google Scholar

Chen BH, Park JH, Kim DW, Park J, Choi SY, Kim IH, Cho JH, Lee TK, Lee JC, Lee CH, Hwang IK, Kim YM, Yan BC, Kang IJ, Shin BN, Lee YL, Shin MC, Cho JH, Lee YJ, Jeon YH, Won MH, Ahn JH. Melatonin improves cognitive deficits via restoration of cholinergic dysfunction in a mouse model of scopolamine-induced amnesia. ACS Chem Neurosci 9, 2016-2024, 2018.10.1021/acschemneuro.7b00278Search in Google Scholar

Cheng XP, Sun H, Ye ZY, Zhou JN. Melatonin modulates the GABAergic response in cultured rat hippocampal neurons. J Pharmacol Sci 119, 177-185, 2012.10.1254/jphs.11183FPSearch in Google Scholar

Coloma FM, Niles LP. Melatonin enhancement of [3H]-gamma-aminobutyric acid and [3H]muscimol binding in rat brain. Biochem Pharmacol 37, 1271-1274, 1988.10.1016/0006-2952(88)90781-2Search in Google Scholar

Dhanaraj E, Nemmani KV, Ramarao P. Melatonin inhibits the development of tolerance to U-50,488H analgesia via benzodiazepine-GABAAergic mechanisms. Pharmacol Biochem Behav 79, 733-737, 2004.10.1016/j.pbb.2004.10.00215582681Search in Google Scholar

Ettaoussi M, Sabaouni A, Peres B, Landagaray E, Nosjean O, Boutin JA, Caignard DH, Delagrange P, Berthelot P, Yous S. Synthesis and pharmacological evaluation of a series of agomelatine analogues as melatonin MT1/MT2 agonist and 5-HT2C antagonist. ChemMedChem 8, 1830-1845, 2013.2403103910.1002/cmdc.20130029424031039Search in Google Scholar

Geary GG, Duckles SP, Krause DN, Kraus DN. Effect of melatonin in the rat tail artery: role of K+ channels and endothelial factors. Br J Pharmacol 123, 1533-1540, 1998.10.1038/sj.bjp.070176115653199605558Search in Google Scholar

Genade S, Genis A, Ytrehus K, Huisamen B, Lochner A. Melatonin receptor-mediated protection against myocardial ischaemia/reperfusion injury: role of its anti-adrenergic actions. J Pineal Res 45, 449-458, 2008.10.1111/j.1600-079X.2008.00615.x1869135718691357Open DOISearch in Google Scholar

Hardeland R. Melatonin and the electron transport chain. Cell Mol Life Sci 74, 38883-38896, 2017.10.1007/s00018-017-2615-928785805Search in Google Scholar

Hernandez-Pacheco A, Araiza-Saidana CI, Granados-Soto V. Possible participation of the nitric oxide-cyclic GMPprotein kinase G-K+ channels pathway in the peripheral antinociception of melatonin. Eur J Pharmacol 596, 70-76, 2008.10.1016/j.ejphar.2008.07.06818755181Search in Google Scholar

Hou SW, Zheng P, Sun FY. Melatonin inhibits outward delayed rectifier potassium in hippocampal CA1 pyramidal neuron via intracellular indole-related domains. J Pineal Res 36, 242-249, 2004.10.1111/j.1600-079X.2004.00123.x15066048Search in Google Scholar

Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP. Update on melatonin receptors: IUPHAR Review 20. B J Pharmacol 173, 2702-2725, 2016.10.1111/bph.13536499528727314810Search in Google Scholar

Johnston JD, Skene DJ. Regulation of mammalian neuroendocrine physiology and rhythms by melatonin. J Endocrinol 226, T187-T198, 2015.10.1530/JOE-15-011926101375Search in Google Scholar

Kamal M, Gbahou F, Guillaume JL, Daulat AM, Benleulmi-Chaachoua A, Luka M, Chen P, Anaraki DK, Baroncini M, Mannoury la Cour C, Millan MJ, Prevot V, Delagrange P, Jockers R. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem 290, 11537-11546, 2015.10.1074/jbc.M114.559542441685725770211Search in Google Scholar

Kasimay O, Cakir B, Devseren BC, Yegen BC. Exogenous melatonin delays gastric emptying rate in rats: role of CCK2 and 5-HT3 receptors. J Physiol Pharmacol 56, 543-553, 2005.16391413Search in Google Scholar

Lapin IP, Mirzaey SM, Ryzov IV, Oxenkrug GF. Anticonvulsant activity of melatonin against seizures induced by quinolinate, kainate, glutamate, NMDA and pentylenetetrazole in mice. J Pineal Res 24, 215-218, 1998.10.1111/j.1600-079X.1998.tb00535.x9572530Open DOISearch in Google Scholar

Lewy AJ, Siever LJ, Uhde TW, Markey SP. Clonidine reduces plasma melatonin levels. J Pharm Pharmacol 38, 555-556, 1986.10.1111/j.2042-7158.1986.tb04639.x28751642875164Open DOISearch in Google Scholar

Lin MT, Chuang JI. Melatonin potentiates 5-HT(1A) receptor activation in rat hypothalamus and results in hypothermia. J Pineal Res 33, 14-19, 2002.10.1034/j.1600-079X.2002.01867.xOpen DOISearch in Google Scholar

Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich, ML. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56, 361-383, 2016.10.1146/annurev-pharmtox-010814-124742Open DOISearch in Google Scholar

Lopez-Gonzalez MA, Santiago AM, Esteban-Ortega F. Sulpiride and melatonin decrease tinnitus perception modulating the autolimbic dopaminergic pathway. J Otolaryngol 36, 213-219, 2007.10.2310/7070.2007.0018Open DOISearch in Google Scholar

Lucchelli A, Sanagostino-Barbone MG, Tonini M. Investigation into the contractile response of melatonin in the guinea-pig isolated colon: the role of 5-HT4 and melatonin receptors. Br J Pharmacol 121, 1775-1781, 1997.10.1038/sj.bjp.0701287Search in Google Scholar

Lyon AM, Taylor VG, Tesmer JJG. Strike a pose: Gaq complexes at the membrane. Trends Pharmacol Sci 35, 23-30, 2014.10.1016/j.tips.2013.10.008Open DOISearch in Google Scholar

Mantovani M, Kaster MP, Pertile R, Calixto JB, Rodrigues AL, Santos, AR. Mechanisms involved in the antinociception caused by melatonin in mice. J Pineal Res 41, 382-389, 2006.10.1111/j.1600-079X.2006.00380.xOpen DOISearch in Google Scholar

Paparrigopoulos T, Psarros C, Bergiannaki JD, Varsou E, Dafni U, Stefanis C. Melatonin response to clonidine administration in depression: indication of presynaptic alpha2-adrenoceptor dysfunction. J Affect Disord 65, 307-313, 2001.1151141110.1016/S0165-0327(00)00270-6Search in Google Scholar

Regrigny O, Delagrange P, Scalbert E, Lartaud-Idjouadiene I, Atkinson J, Chillon JM. Effects of melatonin on rat pial arteriolar diameter in vivo. Br J Pharmacol 127, 1666-1670, 1999.10.1038/sj.bjp.0702714Search in Google Scholar

Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 17, 2070-2095, 2010.10.2174/092986710791233689Open DOISearch in Google Scholar

Satake N, Oe H, Shibata S. Vasorelaxing action of melatonin in rat isolated aorta; possible endothelium dependent relaxation. Gen Pharmacol 22, 1127-1133, 1991.10.1016/0306-3623(91)90589-X1667303Open DOISearch in Google Scholar

Shin DJ, Jeong CW, Lee SH, Yoon MH. Receptors involved in the antinociception of intrathecal melatonin in formalin test of rats. Neurosci Lett 494, 207-210, 2011.10.1016/j.neulet.2011.03.01421396983Search in Google Scholar

Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SP, Buneman OP, Davenport AP, McGrath JC, Peters JA, Spedding M, Catterall WA, Fabbro D, Davies JA, NC-IUPHAR. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 44, D1054-D1068, 2016.10.1093/nar/gkv1037Search in Google Scholar

Storr M, Koppitz P, Sibaev A, Saur D, Kurjak M, Franck H, Schusdziarra V, Allescher HD. Melatonin reduces nonadrenergic, non-cholinergic relaxant neurotransmission by inhibition of nitric oxide synthetase activity in the gastrointestinal tract of rodents in vitro. J Pineal Res 33, 101-108, 2002.10.1034/j.1600-079X.2002.02909.xOpen DOISearch in Google Scholar

Strange PG. Use of the GTPγS ([35S]GTPγS and Eu-GTPγS) binding assay for analysis of ligand potency and efficacy at G protein-coupled receptors. Br J Pharmacol 161, 1238-1249, 2010.10.1111/j.1476-5381.2010.00963.xSearch in Google Scholar

Sumaya IC, Byers DM, Irwin LN, Dei VS, Moss DE. Circadian-dependent effect of melatonin on dopaminergic D2 antagonist-induced hypokinesia and agonist-induced stereotypes in rats. Pharmacol Biochem Behav 78, 727-733, 2004.10.1016/j.pbb.2004.05.014Open DOISearch in Google Scholar

Tamura EK, Silva CL, Markus RP. Melatonin inhibits endothelial nitric oxide production in vitro. J Pineal Res 41, 267-274, 2006.10.1111/j.1600-079X.2006.00366.x16948788Open DOISearch in Google Scholar

Tosini G, Owino S, Guillame JL, Jockers R. Melatonin receptors: latest insights from mouse models. Bioessays 36, 778-787, 2014.2490355210.1002/bies.201400017Search in Google Scholar

Vacas MI, Del Zar MM, Martinuzzo M, Cardinali DP. Binding sites for [3H]-melatonin in human platelets. J Pineal Res 13, 60-65, 1992.10.1111/j.1600-079X.1992.tb00055.xSearch in Google Scholar

Varga Z, Panyi G, Peter M, Pieri C, Csecsei G, Damjanovich S, Gaspar R. Multiple binding sites for melatonin on Kv1.3. Biophys J 80, 1280-1297, 2001.10.1016/S0006-3495(01)76103-6Search in Google Scholar

Weekley LB. Melatonin-induced relaxation of rat aorta: interaction with adrenergic agonists. J Pineal Res 11, 28-34, 1991.10.1111/j.1600-079X.1991.tb00823.xSearch in Google Scholar

Williams WR. Relative molecular similarity within purine nucleotide and ligand structures operating on nitric oxide synthetase guanylyl cyclase and potassium (KATP, BKCa) channels. J Pharm Pharmacol 63, 95-105, 2011.10.1111/j.2042-7158.2010.01169.x21155821Search in Google Scholar

Williams WR. Cell signal transduction: hormones, neurotransmitters and therapeutic drugs relate to purine nucleotide structure. J Recept Signal Transduct Res 38, 101-111, 2018.10.1080/10799893.2018.143127929402169Search in Google Scholar

Yu LM, Di WC, Dong X, Li Z, Zhang Y, Xue XD, Xu YL, Zhang J, Xiao X, Han JS, Liu Y, Yang Y, Wang HS. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMPPKG activation. Biochim Biophys Acta 1864, 563-578, 2017.10.1016/j.bbadis.2017.11.02329196237Search in Google Scholar

Zhao WJ, Zhang M, Miao Y, Yang XL, Wang Z. Melatonin potentiates glycine currents through a PLC/PKC signaling pathway in rat retinal ganglionic cells. J Physiol 15, 2605-2619, 2010.10.1113/jphysiol.2010.187641291699120519319Search in Google Scholar

Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels. J Mol Endocrinol 59, 219-233, 2017.10.1530/JME-17-002828676563Search in Google Scholar

eISSN:
1336-0329
Language:
English