Open Access

Changes in Physical and Chemical Properties of Calcic Chernozem Affected by Robinia pseudoacacia and Quercus robur Plantings


Cite

Amundson, R., Berhe, A.A., Hopmans, J.W., Olson, C., Sztein, A.E. & Sparks D.L. (2015). Soil and human security in the 21st century. Science, 348(6235), 1261071. DOI: 10.1126/science.1261071.10.1126/science.126107125954014Search in Google Scholar

An, S., Mentler, A., Mayer, H. & Blum W.E.H. (2010). Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 81(3), 226–233. DOI: 10.1016/j.catena.2010.04.002.10.1016/j.catena.2010.04.002Search in Google Scholar

Baranovski, B., Roschina, N., Karmyzova, L. & Ivanko I. (2018). Comparison of commonly used ecological scales with the Belgard Plant Ecomorph System. Biosystems Diversity, 26(4), 286–291. DOI: 10.15421/011843.10.15421/011843Search in Google Scholar

Bárcena, T.G., Gundersen, P. & Vesterdal L. (2014). Afforestation effects on SOC in former cropland: Oak and spruce chronosequences resampled after 13 years. Global Change Biology, 20(9), 2938–2952. DOI: 10.1111/gcb.12608.10.1111/gcb.1260824753073Search in Google Scholar

Bejarano, M.D., Villar, R., Murillo, A.M. & Quero J.L. (2010). Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil Tillage Res., 110(1), 108–114. DOI: 10.1016/j.still.2010.07.008.10.1016/j.still.2010.07.008Search in Google Scholar

Berthrong, S.T., Piñeiro, G., Jobbágy, E.G. & Jackson R.B. (2012). Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol. Appl., 22(1), 76–86. DOI: 10.1890/10-2210.1.10.1890/10-2210.122471076Search in Google Scholar

Bonfante, A., Terribile, F. & Bouma J. (2019). Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: An Italian case study. Soil, 5(1), 1–14. DOI: 10.5194/soil-5-1-2019.10.5194/soil-5-1-2019Search in Google Scholar

Boussougou, I.N.M., Brais, S., Tremblay, F. & Gaussiran S. (2010). Soil quality and tree growth in plantations of forest and agricultural origin. Soil Sci. Soc. Am. J., 74(3), 993–1000. DOI: 10.2136/sssaj2009.0264.10.2136/sssaj2009.0264Search in Google Scholar

Brygadyrenko, V.V. (2014). Influence of soil moisture on litter invertebrate community structure of pine forests of the steppe zone of Ukraine. Folia Oecologica, 41(1), 8–16.Search in Google Scholar

Brygadyrenko, V.V. (2015). Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. International Journal of Environmental Research, 9(4), 1183–1192. DOI: 10.22059/IJER.2015.1008.Search in Google Scholar

Brygadyrenko, V.V. (2016). Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava), 35(1), 90–102. DOI: 10.1515/eko-2016-0007.10.1515/eko-2016-0007Search in Google Scholar

Cambi, M., Mariotti, B., Fabiano, F., Maltoni, A., Tani, A., Foderi, C., Laschi, A. & Marchi E. (2018). Early response of Quercus robur seedlings to soil compaction following germination. Land Degrad. Dev., 29(4), 916–925. DOI: 10.1002/ldr.2912.10.1002/ldr.2912Search in Google Scholar

Carter, M.R. & Gregorich E.G. (2008). Soil sampling and methods of analysis. Boca Raton: CRC Press.Search in Google Scholar

Chaplot, V. & Cooper M. (2015). Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 243–244, 205–213. DOI: 10.1016/j.geoderma.2014.12.013.10.1016/j.geoderma.2014.12.013Search in Google Scholar

Chappell, A., Webb, N.P., Leys, J.F., Waters, C.M., Orgill, S. & Eyres M.J. (2019). Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environmental Science and Policy, 93, 43–52. DOI: 10.1016/j.envsci.2018.12.020.10.1016/j.envsci.2018.12.020Search in Google Scholar

Clark, J.D. & Johnson A.H. (2011). Carbon and nitrogen accumulation in post-agricultural forest soils of western New England. Soil Sci. Soc. Am. J., 75(4), 1530–1542. DOI: 10.2136/sssaj2010.0180.10.2136/sssaj2010.0180Search in Google Scholar

Day, S.D., Wiseman, P.E., Dickinson, S.B. & Harris J.R. (2010). Tree root ecology in the urban environment and implications for a sustainable rhizosphere. Arboriculture and Urban Forestry, 36, 193–205.10.48044/jauf.2010.026Search in Google Scholar

De Carvalho Silva Neto, E., Pereira, M.G., Fernandes, J.C.F. & De Andrade Corrêa Neto T. (2016). Aggregate formation and soil organic matter under different vegetation types in Atlantic Forest from Southeastern Brazil. Semina: Ciencias Agrarias, 37(6), 3927–3940. DOI: 10.5433/1679-0359.2016v37n6p3927.10.5433/1679-0359.2016v37n6p3927Search in Google Scholar

Edmondson, J.L., O’Sullivan, O.S., Inger, R., Potter, J., McHugh, N., Gaston, K.J. & Leake J.R. (2014). Urban tree effects on soil organic carbon. PLoS ONE, 9(7), e101872. DOI: 10.1371/journal.pone.0101872.10.1371/journal.pone.0101872408701325003872Search in Google Scholar

Foote, R.L. & Grogan P. (2010). Soil carbon accumulation during temperate forest succession on abandoned low productivity agricultural lands. Ecosystems, 13(6), 795–812. DOI: 10.1007/s10021-010-9355-0.10.1007/s10021-010-9355-0Search in Google Scholar

Gu, C., Mu, X., Gao, P., Zhao, G., Sun, W., Tatarko, J. & Tan X. (2019). Influence of vegetation restoration on soil physical properties in the Loess Plateau, China. Journal of Soils and Sediments, 19(2), 716–728. DOI: 10.1007/s11368-018-2083-3.10.1007/s11368-018-2083-3Search in Google Scholar

Guidelines for soil description (2006). Rome: FAO.Search in Google Scholar

Guo, L.B. & Gifford R.M. (2002). Soil carbon stocks and land use change: a metaanalysis. Global Change Biology, 8, 345–360. DOI: 10.1046/j.1354-1013.2002.00486.x.10.1046/j.1354-1013.2002.00486.xSearch in Google Scholar

Gurmesa, G.A., Schmidt, I.K., Gundersen, P. & Vesterdal L. (2013). Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens. For. Ecol. Manag., 309, 47–57. DOI: 10.1016/j. foreco.2013.02.015.Search in Google Scholar

IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps.Search in Google Scholar

Jiang, C., Liu, J., Zhang, H., Zhang, Z. & Wang D. (2019). China’s progress towards sustainable land degradation control: Insights from the northwest arid regions. Ecological Engineering, 127, 75–87. DOI: 10.1016/j.ecoleng.2018.11.014.10.1016/j.ecoleng.2018.11.014Search in Google Scholar

Jiang, R., Gunina, A., Qu, D., Kuzyakov, Y., Yu, Y., Hatano, R., Frimpong, K.A. & Li M. (2019). Afforestation of loess soils: Old and new organic carbon in aggregates and density fractions. Catena, 177, 49–56. DOI: 10.1016/j. catena.2019.02.002.Search in Google Scholar

Jiao, F., Wen, Z.-M. & An S.-S. (2011). Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena, 86(2), 110–116. DOI: 10.1016/j.catena.2011.03.001.10.1016/j.catena.2011.03.001Search in Google Scholar

Jobbagy, E.G. & Jackson R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl., 10, 423–436. DOI: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.Search in Google Scholar

Kormanek, M., Głąb, T., Banach, J. & Szewczyk G. (2015). Effects of soil bulk density on sessile oak Quercus petraea Liebl. seedlings. European Journal of Forest Research, 134(6), 969–979. DOI: 10.1007/s10342-015-0902-2.10.1007/s10342-015-0902-2Search in Google Scholar

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. DOI: 10.1126/science.1097396.10.1126/science.1097396Search in Google Scholar

Lal, R. (2005). Forest soils and carbon sequestration. For. Ecol. Manag., 220(1−3), 242–258. DOI: 10.1016/j. foreco.2005.08.015.Search in Google Scholar

Li, W., Yan, M., Qingfeng, Z. & Zhikaun J. (2012). Effects of vegetation restoration on soil physical properties in the wind-water erosion region of the Northern Loess Plateau of China. Clean – Soil, Air, Water, 40(1), 7–15. DOI: 10.1002/clen.201100367.10.1002/clen.201100367Search in Google Scholar

Li, Y.Y. & Shao M.A. (2006). Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. J. Arid Environ., 64(1), 77–96. DOI: 10.1016/j.jaridenv.2005.04.005.10.1016/j.jaridenv.2005.04.005Search in Google Scholar

Medvedev, V.V., Plisko, I.V. & Bigun O.N. (2014). Comparative characterization of the optimum and actual parameters of Ukrainian chernozems. Eurasian Soil Science, 47(10), 1044–1057. DOI: 10.1134/S106422931410007X.10.1134/S106422931410007XSearch in Google Scholar

Netsvetov, M., Prokopuk, Y., Didukh, Y. & Romenskyy M. (2018). Climatic sensitivity of Quercus robur L. in flood-plain near Kyiv under river regulation. Dendrobiology, 79, 20–33. DOI: 10.12657/denbio.079.003.10.12657/denbio.079.003Search in Google Scholar

Paul, K.I., Polglase, P.J., Nyakuengama, J.G. & Khanna P.K. (2002). Change in soil carbon following afforestation. For. Ecol. Manag., 168(1–3), 241–257. DOI: 10.1016/S0378-1127(01)00740-X.10.1016/S0378-1127(01)00740-XSearch in Google Scholar

Polláková, N., Šimanský, V. & Kravka M.J. (2018). The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. Soils Sediments, 18, 2790. DOI: 10.1007/s11368-017-1842-x.10.1007/s11368-017-1842-xSearch in Google Scholar

Ritter, E., Vesterdal, L. & Gundersen P. (2003). Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant Soil, 249(2), 319–330. DOI: 10.1023/A:1022808410732.10.1023/A:1022808410732Search in Google Scholar

Sauer, T.J., James, D.E., Cambardella, C.A. & Hernandez-Ramirez G. (2012). Soil properties following reforestation or afforestation of marginal cropland. Plant Soil, 360(1-2), 375–390. DOI: 10.1007/s11104-012-1258-8.10.1007/s11104-012-1258-8Search in Google Scholar

Six, J., Bossuyt, H., Degryze, S. & Denef K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res., 79(1), 7–31. DOI: 10.1016/j.still.2004.03.008.10.1016/j.still.2004.03.008Search in Google Scholar

Sun, D., Zhang, W., Lin, Y., Liu, Z., Shen, W., Zhou, L., Rao, X., Liu, S., Cai, X.-A., He, D. & Fu S. (2018). Soil erosion and water retention varies with plantation type and age. For. Ecol. Manag., 422, 1–10. DOI: 10.1016/j. foreco.2018.03.048.Search in Google Scholar

Ussiri, D.A.N., Lal, R. & Jacinthe P.A. (2006). Soil properties and carbon sequestration of afforested pastures in reclaimed minesoils of Ohio. Soil Sci. Soc. Am. J., 70(5), 1797–1806. DOI: 10.2136/sssaj2005.0352.10.2136/sssaj2005.0352Search in Google Scholar

Webb, N.P., Marshall, N.A., Stringer, L.C., Reed, M.S., Chappell, A. & Herrick J.E. (2017). Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment, 15(8), 450–459. DOI: 10.1002/fee.1530.10.1002/fee.1530Search in Google Scholar

Wiśniewski, P. & Märker M. (2019). The role of soil-protecting forests in reducing soil erosion in young glacial landscapes of Northern-Central Poland. Geoderma, 337, 1227–1235. DOI: 10.1016/j.geoderma.2018.11.035.10.1016/j.geoderma.2018.11.035Search in Google Scholar

Wunder, S. & Bodle R. (2019). Achieving land degradation neutrality in Germany: Implementation process and design of a land use change based indicator. Environmental Science and Policy, 92, 46–55. DOI: 10.1016/j.envsci.2018.09.022.10.1016/j.envsci.2018.09.022Search in Google Scholar

Zhang, Q., Shao, M., Jia, X. & Zhang C. (2018). Understory vegetation and drought effects on soil aggregate stability and aggregate-associated carbon on the load plateau in China. Soil Sci. Soc. Am. J., 82(1), 106–114. DOI: 10.2136/sssaj2017.05.0145.10.2136/sssaj2017.05.0145Search in Google Scholar

Zhang, X., Yang, Z., Zha, T., Zhang, Z., Wang, G., Zhu, Y. & Lü Z. (2017). Changes in the physical properties of soil in forestlands after 22 years under the influence of the conversion of cropland into farmland project in Loess region, Western Shanxi Province. Shengtai Xuebao/Acta Ecologica Sinica, 37(2), 416–424. DOI: 10.5846/stxb201507291596.10.5846/stxb201507291596Search in Google Scholar

Zhang, X., Adamowski, J.F., Deo, R.C., Xu, X., Zhu, G. & Cao J. (2018). Effects of afforestation on soil bulk density and pH in the Loess Plateau, China. Water (Switzerland), 10(12), 1710. DOI: 10.3390/w10121710.10.3390/w10121710Search in Google Scholar

Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z. & Lu Y. (2019). Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total Environ., 647, 1230–1238. DOI: 10.1016/j.scitotenv.2018.08.016.10.1016/j.scitotenv.2018.08.01630180331Search in Google Scholar

eISSN:
1337-947X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Environmental Chemistry, Geosciences, Geography, Life Sciences, Ecology, other