Open Access

The Contingency of Soil Microorganisms and the Selected Soil Biotic and Abiotic Parameters Under Different Land-Uses


Cite

Aira, M., Monroy, F. & Domínguez J. (2009). Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms. J. Hazard. Mater., 162(2−3), 1404−1407. DOI: 10.1016/j.jhazmat.2008.06.031.10.1016/j.jhazmat.2008.06.03118639984Open DOISearch in Google Scholar

Andersen, S.M., Johnsen, K., Sorensen, J., Nielsen, P. & Jacobsen C.S. (2000). Pseudomonas frederiksbergergensis sp. nov., isolated from soil at a coal gasification site. Int. J. Syst. Evolutionary Microbiol., 50, 1957−1964. DOI: 10.1099/00207713-50-6-1957.10.1099/00207713-50-6-195711155968Open DOISearch in Google Scholar

Barančoková, M. & Barančok P. (2015). Distribution of the traditional agricultural landscape types reflecting geological substrate and slope processes in the Kysuce region. Ekológia (Bratislava), 34(4), 339−355. DOI: 10.11515/eko-2015-0031.Search in Google Scholar

Bergogne-Bérézin, E. & Towner K.J. (1996). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev., 9(2), 148−165. DOI: 10.1128/CMR.9.2.148.10.1128/CMR.9.2.1481728888964033Open DOISearch in Google Scholar

Bossio, D.A., Fleck, J.A., Scow, K.M. & Fujii R. (2006). Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol. Biochem. 38, 1223–1233. DOI: 10.1016/j.soilbio.2005.09.027.10.1016/j.soilbio.2005.09.027Open DOISearch in Google Scholar

Brackin, R., Robinson, N., Lakshmanan, P. & Schmidt S. (2013). Microbial function in adjacent subtropical forest and agricultural soil. Soil Biol. Biochem., 57, 68–77. DOI: 10.1016/j.soilbio.2012.07.015.10.1016/j.soilbio.2012.07.015Open DOISearch in Google Scholar

Brown, G.G. & Doube B. (2004). Functional interactions between earthworms, microorganisms, organic matter and plants. In C.A. Edwards (Ed.), Earthworm ecology (pp. 213−240). London, Boca Raton, FL, USA: CRC Press.Search in Google Scholar

Brussaard, L., de Ruiter, P.C. & Brown G.G. (2007). Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ., 121, 233−244. DOI: 10.1016/j.agee.2006.12.013.10.1016/j.agee.2006.12.013Open DOISearch in Google Scholar

Cartwright, J.M. (2015). Average Well Color Development (AWCD) data based on Community Level Physiological Profiling (CLPP) of soil samples from 120 point locations within limestone cedar glades at Stones River National Battlefield near Murfreesboro, Tennessee. Tennesee: U.S. Geological Survey data release. DOI: 10.5066/F7N-V9G9C.Search in Google Scholar

Central Control and Testing Institute in Agriculture (2013). Results of agrochemical testing of soils in Slovakia during 2006−2011. (XII. Cycle). Bratislava: CCTIA.Search in Google Scholar

Coq, S., Barthès, B.G., Oliver, R., Rabary, B. & Blanchart E. (2007). Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues – an experimental study (Madagascar). Soil Biol. Biochem., 39(8), 2119−2128. DOI: 10.1016/j.soilbio.2007.03.019.10.1016/j.soilbio.2007.03.019Search in Google Scholar

Cordova-Rosa, S.M., Dams, R.I. & Radetski M.R. (2009). Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant. J. Hazard. Mater., 164(1), 61−66. DOI: 10.1016/j.jhazmat.2008.07.120.10.1016/j.jhazmat.2008.07.12018774223Open DOISearch in Google Scholar

Delgado-Baquerizo, M., Reich, P.B., Khachane, A.N., Campbell, C.D., Thomas, N., Freitag, T.E., Al-Soud, W.A., Sørensen, S., Bardgett, R.D. & Singh B.K. (2016). It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19(3), 1176−1188. DOI: 10.1111/1462-2920.13642.10.1111/1462-2920.1364227943556Open DOISearch in Google Scholar

Ditterich, F., Poll, Ch., Pronk, K.J., Heister, K., Chandan, A., Rennert, T., KÖgel-Knabner, I. & Kandeler E. (2016). Succession of soil microbial communities and enzyme activities in artificial soils. Pedobiologia, 59, 93−104. DOI: 10.1016/j.pedobi.2016.03.002.10.1016/j.pedobi.2016.03.002Open DOISearch in Google Scholar

Domínguez, J., Aira, M. & Gomez-Brandon M. (2010). Vermicomposting: earthworm enhances the work of microbes. In H. Insam, I. Frank-Whittle & M. Goberna (Eds.), Microbes at work: from waste to resources (pp. 93−110). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-04043-6_5.10.1007/978-3-642-04043-6_5Open DOISearch in Google Scholar

Don, A., Schumacher, J. & Freibauer A. (2011). Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Global Change Biology, 17, 1658–1670. DOI: 10.1111/j.1365-2486.2010.02336.x.10.1111/j.1365-2486.2010.02336.xOpen DOISearch in Google Scholar

Dubey, S.K., Tripathi, A.K. & Upadhyay B.N. (2006). Exploration of soil bacterial communities for their potential as bioresource. Bioresour. Technol., 97, 2217−2224. DOI: 10.1016/j.biortech.2005.06.00810.1016/j.biortech.2005.06.00816198103Open DOISearch in Google Scholar

FAO (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO.Search in Google Scholar

Fiala, K. (1999). Soil samples methods of partial monitoring system – Soil (in Slovak). Bratislava:VÚPaOP.Search in Google Scholar

Firestone, M., Balser, T. & Herman D. (1997). Defining soil quality in terms of microbial community structure. Annual Reports of Research Projects. Berkeley: University of California.Search in Google Scholar

Frac, M., Oszust, K. & Lipiec J. (2012). Community level physiological profiles (CLPP) characterization and microbial activity of soil amended with dairy sewage sludge. Sensors, 12, 3253−3268. DOI: 10.3390/s120303253.10.3390/s120303253337657022737006Open DOISearch in Google Scholar

Frank, J.F. (1997). Milk and dairy products. In M.P. Doyle, L.R. Beuchat & T.J. Montville (Eds.), Food microbiology, fundamentals and frontiers (pp. 101). Washington: ASM Press.Search in Google Scholar

Fierer, N. & Lennon J. (2011). The generation and maintenance of diversity in microbial communities. Am. J. Bot., 98(3), 439–448. DOI: 10.3732/ajb.1000498.10.3732/ajb.100049821613137Open DOISearch in Google Scholar

García-Orenes, F., Morugán-Coronado, A., Zornoza, R. & Scow K. (2013). Changes in soil microbial community structure influenced by agricultural management practices in a Mediterranean Agro-Ecosystem. PLoS One, 8(11), e80522. DOI: 10.1371/journal.pone.0080522.10.1371/journal.pone.0080522383237524260409Search in Google Scholar

Garland, J.L. (1997). Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol., 24, 289−300. DOI: 10.1111/j.15746941.1997.tb00446.x.10.1111/j.15746941.1997.tb00446.xOpen DOISearch in Google Scholar

Giller, P.S. (1996). The diversity of soil communities, the “poor man’s tropical forest”. Biodivers. Conserv., 5, 135−168.Search in Google Scholar

Gomez, E., Garland, J. & Conti M. (2004). Reproducibility in the response of soil bacterial community level physiological profiles from a land use intensification gradient. Appl. Soil Ecol., 26, 21–30. DOI:10.1016/j.apsoil.2003.10.007.10.1016/j.apsoil.2003.10.007Open DOISearch in Google Scholar

Herlemann, D.P.R, Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J.J. & Andersson A.F. (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME, 5, 1571–1579. DOI: 10.1038/ismej.2011.41.10.1038/ismej.2011.41317651421472016Open DOISearch in Google Scholar

Ikemoto, S., Suzuki, K., Kaneko, T. & Komagata K. (1980). Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int. J. Syst. Evol. Microbiol., 30, 437−447. DOI: 10.1099/00207713-30-2-437.10.1099/00207713-30-2-437Open DOISearch in Google Scholar

Jaďuďová, J., Kanianska, R., Kizeková, M. & Makovníková J. (2016). Evaluation of habitat provision on the basis of carabidae diversity in Slovak Permanent Grasslands. IOP Conference Series: Earth and Environmental Science, 44, 1−5.Search in Google Scholar

Jat, L.K., Singh, Y.V., Meena, S.K., Meena, S.K., Parihar, M., Jatav, H.S., Meena, R.K & Singh V. (2015). Does integrated nutrient management enhance agricultural productivity? Journal of Pure and Applied Microbiology, 9(2), 1211−1221.Search in Google Scholar

Júdová, J., Kurjakova, L., Talan, T., Pajtasova, M. & Petrášová A. (2015). Microbial communities of Slovakia peatlands and oil spring. In 15th International Multidisciplinary Scientific Geoconference SGEM 2015: Water resources, forest, marine and ocean ecosystems (pp. 221−230). 18-24 June 2015, Albena, Bulgaria.Search in Google Scholar

Kanianska, R., Kizeková, M., Nováček, M. & Zeman M. (2014). Land-use and land-cover changes in rural areas during different political systems: A case study of Slovakia from 1782 to 2006. Land Use Policy, 36, 554−566. DOI: 10.1016/j.landusepol.2013.09.018.10.1016/j.landusepol.2013.09.018Open DOISearch in Google Scholar

Kanianska, R., Jaďuďová, J., Makovníková, J. & Kizeková M. (2016). Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability, 8(9), 906. DOI: 10.3390/SU8090906.10.3390/8090906Open DOISearch in Google Scholar

Kaschuk, G., Alberton, O. & Hungria M. (2009). Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biol. Biochem., 42, 1–13. DOI: 10.1016/j.soilbio.2009.08.020.10.1016/j.soilbio.2009.08.020Open DOISearch in Google Scholar

Kersters, K., Ludwig, W., Vancanneyt, M., De Vos, P., Gills, M. & Schleifer K.H. (1996). Recent changes in the classification of the pseudomonads: an overview. Syst. Appl. Microbiol., 19, 465−477. DOI: 10.1016/S0723-2020(96)80020-8.10.1016/S0723-2020(96)80020-8Open DOISearch in Google Scholar

Kirkham, F.W., Mountford, J.O. & Wilkins R.J. (1996). The effects of nitrogen, potassium and phosphorus addition on the vegetation of a Somerset peat moor under cutting management. J. Appl. Ecol., 33, 1013–1029.10.2307/2404682Search in Google Scholar

Kumar, A., Meena, R., Meena, V.S., Bisht, J.K. & Pattanayak A. (2016). Towards the stress management and environmental sustainability. Journal of Cleaner Production, 137, 821−822. DOI: 10.1016/j.jclepro.2016.07.163.10.1016/j.jclepro.2016.07.163Open DOISearch in Google Scholar

Lauber, C.L., Hamady, M., Knight, R. & Fierer N. (2009). Pyrosequencing-based assessment soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol., 75, 5111–5120. DOI: 10.1128/AEM.00335-09.10.1128/AEM.00335-09272550419502440Open DOISearch in Google Scholar

Ložek, V. (1973). Nature in the quaternary (in Czech). Praha: Academia.Search in Google Scholar

Madigan, M.T., Martinko, J.M., Dunlap, P.V. & Clark D.V. (2008). Brock biology of microorganisms. New York: Pearson Higher Education.Search in Google Scholar

Markande, A.R. & Nerurkar A.S. (2016). Bioemulsifier (BE-AM1) produced by Solibacillus silvestris AM1 is a functional amyloid that modulates bacterial cell-surface properties. Biofouling, 32(10), 1153−1162. DOI: 10.1080/08927014.2016.1232716.10.1080/08927014.2016.123271627669827Search in Google Scholar

McGuire, K.L. & Treseder K.K. (2010). Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol. Biochem., 42, 529–535. DOI: 10.1016/j.soilbio.2009.11.016.10.1016/j.soilbio.2009.11.016Open DOISearch in Google Scholar

Meyer, A., Focks, A., Radl, V., Keil, D., Welzl, G., Schöning, I., Boch, S., Marhan, S., Kandeler, E. & Schloter M. (2013). Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE, 8(9), e73536. DOI: 10.1371/journal.pone.0073536.10.1371/journal.pone.0073536376535124039974Search in Google Scholar

Palleroni, N.J. (1993). Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria. Antonie Leeuwenhoek, 64(3−4), 231−251. DOI: 10.1007/BF00873084.10.1007/BF008730848085787Open DOISearch in Google Scholar

Palleroni, N.J. & Bradbury J.F. (1993). Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Evol. Microbiol., 43(3), 606−609. DOI: 10.1099/00207713-43-3-606.10.1099/00207713-43-3-6068347518Open DOISearch in Google Scholar

Pampulha, M.E. & Oliveira A. (2006). Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Curr. Microbiol., 53, 238−243. DOI: 10.1007/s00284-006-0116-4.10.1007/s00284-006-0116-416855810Open DOISearch in Google Scholar

Patra, A.K., Abbadie, L., Clays-Josserand, A., Degrange, V., Grayston, S.J., Guillaumaud, N., Loiseau, P., Louault, F., Mahmood, S., Nazaret, S., Philippot, L., Poly F., Prosser J.I. & Le Roux X. (2006). Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environmental Microbiology, 8(6), 1005–1016. DOI: 10.1111/j.1462-2920.2006.00992.x.10.1111/j.1462-2920.2006.00992.x16689721Search in Google Scholar

Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gourbiere, F., Thioulouse, J. & Nazaret S. (2000). Heterogenous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb. Ecol., 39, 263−272. DOI: 10.1007/s002480000032.10.1007/s002480000032Open DOISearch in Google Scholar

Roger-Estrade, J., Anger, C., Bertrand, M. & Richard G. (2010). Tillage and soil ecology: Partners for sustainable agriculture. Soils Tillage Res., 111, 33−40. DOI: 10.1016/j.still.2010.08.010.10.1016/j.still.2010.08.010Open DOISearch in Google Scholar

Rosello-Mora, R. & Amann R. (2001). The species concept for prokaryotes. FEMS Microbiol. Rev., 25, 39−67. DOI: 10.1111/j.1574-6976.2001.tb00571.x.10.1111/j.1574-6976.2001.tb00571.x11152940Open DOISearch in Google Scholar

Smith, A.P., Marín-Spiotta, E., de Graaff, M.A. & Balser T.C. (2014). Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biol. Biochem., 77, 292–303. DOI: 10.1016/j.soilbio.2014.05.030.10.1016/j.soilbio.2014.05.030Open DOISearch in Google Scholar

Thurston, J.M. (1969). The effect of liming and fertilizers on the botanical composition of permanent grassland and the yield of hay. Oxford: Blackwell.Search in Google Scholar

Urbanová, M., Šnajdr, J. & Baldrian P. (2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem., 84, 53–64. DOI: 10.1016/j.soilbio.2015.02.011.10.1016/j.soilbio.2015.02.011Open DOISearch in Google Scholar

Wolf, A., Fritze, A., Hagemann, M. & Berg G. (2002). Stenotrophomonas rhizophila sp. Nos., a novel plant-associated bacterium with atifungal properties. Int. J. Syst. Evol. Microbiol., 52, 1937−1944. DOI: 10.1099/00207713-52-6-1937.10.1099/00207713-52-6-193712508851Open DOISearch in Google Scholar

Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D. & Tilman D. (2003). Plant diversity, soil microbial communities, and ecosystem function. Ecology, 84, 2042–2050. DOI: 10.1890/02-0433.10.1890/02-0433Open DOISearch in Google Scholar

eISSN:
1337-947X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography