Open Access

Determination of Organic Fractions and Enzymatic Activity in Forest Spruce Soil of Tatra National Park


Cite

Adam, G. & Duncan H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem., 33(7), 943–951. DOI: 10.1016/S0038-0717(00)00244-3.10.1016/S0038-0717(00)00244-3Open DOISearch in Google Scholar

Allen, S.E. (1974). Chemical analysis of ecological materials. Oxford : Blackwell Scientific. https://trove.nla.gov.au/version/45810376Search in Google Scholar

Baldrian, P., Kolařík, M., Štursová, M., Kopecký, J., Valášková, V., Větrovský, T., Žifčáková, L., Šnajdr, J., Rídl, J., Vlček, Č. & Voříšková J. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal, 6(2), 248–258. DOI: 10.1038/ismej.2011.95.10.1038/ismej.2011.95Open DOISearch in Google Scholar

Bardgett, R. (2005). The biology of soil: A community and ecosystem approach. Oxford: OUP.10.1093/acprof:oso/9780198525035.001.0001Search in Google Scholar

Błońska, E., Lasota, J. & Gruba P. (2016). Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand. Ecol. Res., 31(5), 655–664. DOI: 10.1007/s11284-016-1375-6.10.1007/s11284-016-1375-6Open DOISearch in Google Scholar

Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. & Paul E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988–995. DOI: 10.1111/gcb.12113.10.1111/gcb.12113Open DOISearch in Google Scholar

Crawford, D.L. & Crawford R.L. (1980). Microbial degradation of lignin. Enzyme Microb. Technol., 2(1), 11–22. DOI: 10.1016/0141-0229(80)90003-4.10.1016/0141-0229(80)90003-4Open DOISearch in Google Scholar

Don, A., Bärwolff, M., Kalbitz, K., Andruschkewitsch, R., Jungkunst, H.F. & Schulze E.-D. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. For. Ecol. Manag., 276, 239–246. DOI: 10.1016/j.foreco.2012.04.010.10.1016/j.foreco.2012.04.010Open DOISearch in Google Scholar

Ďugová, O., Barančoková, M., Krajčí, J. & Barančok P. (2013). Soil micromycetes and vegetation changes associated with vegetative cover destruction on chosen localities of tatry mountains - first approach. Ekológia (Bratislava), 32(2), 158–261. DOI: 10.2478/eko-2013-0014.10.2478/eko-2013-0014Open DOISearch in Google Scholar

Ehrman, T. (1996). Determination of Acid-Soluble lignin in biomass. Golden, CO: National Renewable Energy Laboratory.Search in Google Scholar

Eivazi, F. & Tabatabai M. A. (1977). Phosphatases in soils. Soil Biol. Biochem., 9(3), 167–172. DOI: 10.1016/0038-0717(77)90070-0.10.1016/0038-0717(77)90070-0Open DOISearch in Google Scholar

Flaig, W., Beutelspacher, H. & Rietz E. (1975). Chemical composition and physical properties of humic substances. In Soil components (pp. 1–211). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-65915-7_1.10.1007/978-3-642-65915-7_1Open DOISearch in Google Scholar

Gáfriková, J. & Hanajík P. (2016). Soil respiration, microbial abundance, organic matter and c, h, n, s contents among recovering windthrow sites in tatra national park. Phytopedon (Bratislava), 14, 7–14.Search in Google Scholar

Gömöryová, E., Střelcová, K., Škvarenina, J., Bebej, J. & Gömöry D. (2008). The impact of windthrow and fire disturbances on selected soil properties in the Tatra National Park. Soil and Water Research, 3, S74–S80. DOI: 10.17221/9/2008-SWR.10.17221/9/2008-SWRSearch in Google Scholar

Green, V., Stott, D. & Diack M. (2006). Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem., 38, 693–701.10.1016/j.soilbio.2005.06.020Search in Google Scholar

Gruba, P. & Mulder J. (2015). Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ., 511, 655–662. DOI: 10.1016/j.scitotenv.2015.01.013.10.1016/j.scitotenv.2015.01.01325596350Open DOISearch in Google Scholar

Hanajík, P. & Fritze H. (2009). Effects of forest management on soil properties at windthrow area in tatra national park (TANAP). Acta Environmentalica Universitatis Comenianae (Bratislava), 17, 36–46.Search in Google Scholar

Hanajík, P., Šimonovičová, A. & Vykouková I. (2016a). Vybrané pôdno-ekologické charakteristiky na kalamitnom území v TANAP-e (2005 – 2016). Ostrava: Vysoká škola banská - Technická univerzita v Ostrave.Search in Google Scholar

Hanajík, P., Zvarik, M., Fritze, H., Simkovic, I. & Kanka R. (2016b). Composition of microbial PLFAs and correlations with topsoil characteristics in the rare active travertine spring-fed fen. Ekológia (Bratislava), 35, 295–308. DOI: 10.1515/eko-2016-0024.10.1515/eko-2016-0024Open DOISearch in Google Scholar

Hanajík, P., Gáfriková, J. & Zvarík M. (2017). Dehydrogenase activity in topsoil at windthrow plots in Tatra National Park. Central European Forestry Journal, 63(2–3), 91–96. DOI: 10.1515/forj-2017-0017.10.1515/forj-2017-0017Open DOISearch in Google Scholar

Higuchi, T. (2006). Formation and biological degradation of lignins. In Advances in enzymology and related areas of molecular biology (pp. 207–283). Wiley-Blackwell. DOI: 10.1002/9780470122792.ch5.10.1002/9780470122792.ch54947343Open DOISearch in Google Scholar

Javoreková, S. & Hoblik J. (2004). Enzymatic activities of microorganisms in the soil profile. http://agris.fao.org/agris-search/search.do?recordID=SK2005100075Search in Google Scholar

Jonášová, M., Vávrová, E. & Cudlín P. (2010). Western Carpathian mountain spruce forest after a windthrow: natural regeneration in cleared and uncleared areas. For. Ecol. Manag., 259(6), 1127–1134. DOI: 10.1016/j.foreco.2009.12.027.10.1016/j.foreco.2009.12.027Open DOISearch in Google Scholar

Kutsch, W.L., Bahn, M. & Heinemeyer A. (2009). Soil carbon dynamics: An integrated methodology. Cambridge: Cambridge University Press.10.1017/CBO9780511711794Search in Google Scholar

Margesin, R., Minerbi, S. & Schinner F. (2014). Long-term monitoring of soil microbiological activities in two forest sites in South Tyrol in the Italian Alps. Microbes and Environments, 29(3), 277–285. DOI: 10.1264/jsme2.ME14050.10.1264/jsme2.ME14050Open DOISearch in Google Scholar

Marín-Spiotta, E., Swanston, C.W., Torn, M.S., Silver, W.L. & Burton S.D. (2008). Chemical and mineral control of soil carbon turnover in abandoned tropical pastures. Geoderma, 143(1), 49–62. DOI: 10.1016/j.geoderma.2007.10.001.10.1016/j.geoderma.2007.10.001Open DOISearch in Google Scholar

Miranda, I., Gominho, J., Mirra, I. & Pereira H. (2013). Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products, 41, 299–305. DOI: 10.1016/j.indcrop.2012.04.024.10.1016/j.indcrop.2012.04.024Open DOISearch in Google Scholar

Nannipieri, P., Giagnoni, L., Landi, L. & Renella G. (2011). Role of phosphatase enzymes in soil. In Phosphorus in action (pp. 215–243). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-15271-9_9.10.1007/978-3-642-15271-9_9Open DOISearch in Google Scholar

Nicholson, D.J., Lea Vitt, A.T. & Francis R.C. (2014). A three-stage klason method for more accurate determinations of hardwood lignin content. Cellulose Chemistry and Technology, 48, 53–59.Search in Google Scholar

Pometto, A.L. & Crawford D.L. (1986). Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus. Appl. Environ. Microbiol. 52(2), 246–250.10.1128/aem.52.2.246-250.1986Search in Google Scholar

Shaw, L.J. & Burns R.G. (2005). Enzyme activity profiles and soil quality. In Microbiological methods for assessing soil quality (pp. 156–180). UK: CABI Publishing.Search in Google Scholar

Schnürer, J. & Rosswall T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 43, 1256–1261.10.1128/aem.43.6.1256-1261.1982Search in Google Scholar

Straková, P., Anttila, J., Spetz, P., Kitunen, V., Tapanila, T. & Laiho R. (2010). Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil, 335(1–2), 501–520. DOI: 10.1007/s11104-010-0447-6.10.1007/s11104-010-0447-6Open DOISearch in Google Scholar

Šantrůčková, H., Vrba, J., Picek, T. & Kopáček J. (2004). Soil biochemical activity and phosphorus transformations and losses from acidified forest soils. Soil Biol. Biochem., 36(10), 1569–1576. DOI: 10.1016/j.soilbio.2004.07.015.10.1016/j.soilbio.2004.07.015Search in Google Scholar

Špoljar, A., Barčić, D., Volf, T.P., Husnjak, S. & Ivica M. (2014). Chemical properties of the forest litter in Istria and the Croatian Littoral. Ekológia (Bratislava), 33(3), 242–251. DOI: 10.2478/eko-2014-0023.10.2478/eko-2014-0023Open DOISearch in Google Scholar

Štursová, M., Žifčáková, L., Leigh, M.B., Burgess, R. & Baldrian P. (2012). Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol.Ecol., 80(3), 735–746. DOI: 10.1111/j.1574-6941.2012.01343.x.10.1111/j.1574-6941.2012.01343.xOpen DOISearch in Google Scholar

Tabatabai, M.A. & Bremner J.M. (1969). USE of p-Nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem., 1, 301–307.10.1016/0038-0717(69)90012-1Search in Google Scholar

Thevenot, M., Dignac, M.-F. & Rumpel C. (2010). Fate of lignins in soils: A review. Soil Biol. Biochem., 42(8), 1200–1211. DOI: 10.1016/j.soilbio.2010.03.017.10.1016/j.soilbio.2010.03.017Search in Google Scholar

Vávřová, P., Penttilä, T. & Laiho R. (2009). Decomposition of Scots pine fine woody debris in boreal conditions: Implications for estimating carbon pools and fluxes. For. Ecol. Manag., 257(2), 401–412. DOI: 10.1016/j.foreco.2008.09.017.10.1016/j.foreco.2008.09.017Open DOISearch in Google Scholar

von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E. & Marschner B. (2007). SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem., 39(9), 2183–2207. DOI: 10.1016/j.soilbio.2007.03.007.10.1016/j.soilbio.2007.03.007Open DOISearch in Google Scholar

Wieder, R.K. & Starr S.T. (1998). Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Commun. Soil Sci.Plant Anal., 29(7–8), 847–857. DOI: 10.1080/00103629809369990.10.1080/00103629809369990Open DOISearch in Google Scholar

Yadav, K.R., Sharma, R.K. & Kothari R.M. (2002). Bioconversion of eucalyptus bark waste into soil conditioner. Bioresour. Technol. 81(2), 163–165. DOI: 10.1016/S0960-8524(01)00061-X.10.1016/S0960-8524(01)00061-XOpen DOISearch in Google Scholar

eISSN:
1337-947X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography