Cite

[1] Vo-Dinh T, Fetzer J, Campiglia AD. Monitoring and characterization of polyaromatic compounds in the environment. Talanta. 1998;47:943-69. DOI: 10.1016/S0039-9140(98)00162-3.10.1016/S0039-9140(98)00162-3Search in Google Scholar

[2] US EPA O. Resources and Guidance Documents for Compliance Monitoring. US EPA. 2013. Available from: https://www.epa.gov/compliance/resources-and-guidance-documents-compliance-monitoring.Search in Google Scholar

[3] Council Directive 75/440/EEC. European Environment Agency. Available from: https://www.eea.europa.eu/policy-documents/council-directive-75-440-eec.Search in Google Scholar

[4] Council Directive 79/869/EEC. Available from: http://rod.eionet.europa.eu/instruments/213.Search in Google Scholar

[5] Council Directive 80/778/EEC. Available from: https://rod.eionet.europa.eu/instruments/218.Search in Google Scholar

[6] Official Journal of the European Union - L:1998:330:TOC. Available from: https://eur-lex.europa.eu/oj/direct-access.html.Search in Google Scholar

[7] Korzeniowska J, Panek E. Trace metal concentrations in Pleurozium schreberi and Taraxacum officinale along the road No. 7. Ecol Chem Eng S. 2019;26:651-63. DOI: 10.1515/eces-2019-0047.10.1515/eces-2019-0047Search in Google Scholar

[8] Harvey RG. Bridged polycyclic aromatic hydrocarbons. A review. Org Prep Proced Int. 1997;29:243-83. DOI: 10.1080/00304949709355197.10.1080/00304949709355197Search in Google Scholar

[9] Council Directive 79/869/EEC of 9 October 1979 concerning the methods of measurement and frequencies of sampling and analysis of surface water intended for the abstraction of drinking water in the Member States. vol. OJ L. 1979. Available from: https://op.europa.eu/cs/publication-detail/-/publication/af622130-de1c-405e-bced-d93f3fc6de64/language-en.Search in Google Scholar

[10] Norin M, Strömvaix AM. Leaching of organic contaminants from storage of reclaimed asphalt pavement. Environ Technol. 2004;25:323-40. DOI: 10.1080/09593330409355466.10.1080/09593330409355466Search in Google Scholar

[11] Becker L, Matuschek G, Lenoir D, Kettrup A. Leaching behaviour of wood treated with creosote. Chemosphere. 2001;42:301-8. DOI: 10.1016/S0045-6535(00)00071-0.10.1016/S0045-6535(00)00071-0Search in Google Scholar

[12] Pozzoli L, Gilardoni S, Perrone MG, de Gennaro G, de Rienzo M, Vione D. Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. I: monitoring and sources. Annali Di Chimica. 2004;94(1-2):17-33. DOI: 10.1002/adic.200490002.10.1002/adic.200490002Search in Google Scholar

[13] Jiang CQ, Alexander R, Kagi RI, Murray AP. Origin of perylene in ancient sediments and its geological significance. Org Geochem. 2000;31:1545-59. DOI: 10.1016/S0146-6380(00)00074-7.10.1016/S0146-6380(00)00074-7Search in Google Scholar

[14] Barrado AI, García S, Castrillejo Y, Barrado E. Exploratory data analysis of PAH, nitro-PAH and hydroxy-PAH concentrations in atmospheric PM10-bound aerosol particles. Correlations with physical and chemical factors. Atmosph Environ. 2013;67:385-93. DOI: 10.1016/j.atmosenv.2012.10.030.10.1016/j.atmosenv.2012.10.030Search in Google Scholar

[15] Pachurka L, Gruszecka-Kosowska A, Kobus D, Sowka I. Assessment of inhalational exposure of residents of Wroclaw, Krakow and Warszawa to benzo[a]pyrene. Ecol Chem Eng A. 2018;25:39-49. DOI: 10.2428/ecea.2018.25(1)4.Search in Google Scholar

[16] Mackay D, Shiu WY, Ma KC. Illustrated Handbook of Physical-Chemical Properties of Environmental Fate for Organic Chemicals. Boca Raton, FL: CRC Press; 1997. ISBN: 1566706874Search in Google Scholar

[17] Sverdrup LE, Nielsen T, Krogh PH. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ Sci Technol. 2002;36:2429-35. DOI: 10.1021/es010180s.10.1021/es010180sSearch in Google Scholar

[18] Gundel LA, Lee VC, Mahanama KRR, Stevens RK, Daisey JM. Direct determination of the phase distributions of semi-volatile polycyclic aromatic hydrocarbons using annular denuders. Atmosph Environ. 1995;29:1719-33. DOI: 10.1016/1352-2310(94)00366-S.10.1016/1352-2310(94)00366-SSearch in Google Scholar

[19] Chin YP, Aiken GR, Danielsen KM. Binding of pyrene to aquatic and commercial humic substances:  the role of molecular weight and aromaticity. Environ Sci Technol. 1997;31:1630-5. DOI: 10.1021/es960404k.10.1021/es960404kSearch in Google Scholar

[20] Krauss M, Wilcke W. Predicting soil-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls by desorption with methanol-water mixtures at different temperatures. Environ Sci Technol. 2001;35:2319-25. DOI: 10.1021/es001616r.10.1021/es001616rSearch in Google Scholar

[21] Organization WH. Guidelines for Drinking-water Quality: Recommendations. World Health Organization; 2004. Available from: https://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf.Search in Google Scholar

[22] Fernández P, Carrera G, Grimalt JO, Ventura M, Camarero L, Catalan J, et al. Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas. Environ Sci Technol. 2003;37:3261-7. DOI: 10.1021/es020137k.10.1021/es020137kSearch in Google Scholar

[23] Durant JL, Busby WF, Lafleur AL, Penman BW, Crespi CL. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Res/Genetic Toxicol. 1996;371:123-57. DOI: 10.1016/S0165-1218(96)90103-2.10.1016/S0165-1218(96)90103-2Search in Google Scholar

[24] Allen JO, Dookeran NM, Taghizadeh K, Lafleur AL, Smith KA, Sarofim AF. Measurement of oxygenated polycyclic aromatic hydrocarbons associated with a size-segregated urban aerosol. Environ Sci Technol. 1997;31:2064-70. DOI: 10.1021/es960894g.10.1021/es960894gSearch in Google Scholar

[25] Rosenkranz HS, Mermelstein R. The genotoxicity, metabolism and carcinogenicity of nitrated polycyclic aromatic hydrocarbons. J Environ Sci Health Part C: Environ Carcinogenesis Rev. 1985;3:221-72. DOI: 10.1080/10590508509373334.10.1080/10590508509373334Search in Google Scholar

[26] Diamond SA, Milroy NJ, Mattson VR, Heinis LJ, Mount DR. Photoactivated toxicity in amphipods collected from polycyclic aromatic hydrocarbon-contaminated sites. Environ Toxicol Chem. 2009;22:2752-60. DOI: 10.1897/02-640.10.1897/02-64014587918Search in Google Scholar

[27] Monson PD, Ankley GT, Kosian PA. Phototoxic response of Lumbriculus variegatus to sediments contaminated by polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 1995;14:891-4. DOI: 10.1002/etc.5620140522.10.1002/etc.5620140522Search in Google Scholar

[28] Ankley GT, Collyard SA, Monson PD, Kosian PA. Influence of ultraviolet light on the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 1994;13:1791-6. DOI: 10.1002/etc.5620131110.10.1002/etc.5620131110Search in Google Scholar

[29] Ninane L, Kanari N, Criado C, Jeannot C, Evrard O, Neveux N. New Processes for Alkali Ferrate Synthesis. Ferrates, vol. 985. Am Chem Soc; 2008. ISBN: 9780841269613. DOI: 10.1021/bk-2008-0985.ch006.10.1021/bk-2008-0985.ch006Search in Google Scholar

[30] Alsheyab M, Jiang JQ, Stanford C. Electrochemical generation of ferrate(VI): Determination of optimum conditions. Desalination. 2010;254:175-8. DOI: 10.1016/j.desal.2009.11.035.10.1016/j.desal.2009.11.035Search in Google Scholar

[31] Kudlek E. Identification of degradation by-products of selected pesticides during oxidation and chlorination processes. Ecol Chem Eng S. 2019;26:571-81. DOI: 10.1515/eces-2019-0042.10.1515/eces-2019-0042Search in Google Scholar

[32] Rahdar A, Rahdar S, Ahmadi S, Fu J. Adsorption of ciprofloxacin from aqueous environment by using synthesized nanoceria. Ecol Chem Eng S. 2019;26:299-311. DOI: 10.1515/eces-2019-0021.10.1515/eces-2019-0021Search in Google Scholar

[33] Sabliy L, Kuzminskiy Y, Zhukova V, Kozar M, Sobczuk H. New approaches in biological wastewater treatment aimed at removal of organic matter and nutrients. Ecol Chem Eng S. 2019;26:331-43. DOI: 10.1515/eces-2019-0023.10.1515/eces-2019-0023Search in Google Scholar

[34] Wacławek S, Padil VVT, Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol Chem Eng S. 2018;25:9-34. DOI: 10.1515/eces-2018-0001.10.1515/eces-2018-0001Search in Google Scholar

[35] Vinod VTP, Wacławek S, Senan C, Kupčík J, Pešková K, Černík M, et al. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv. 2017;7:13997-4009. DOI: 10.1039/C7RA00464H.10.1039/C7RA00464HSearch in Google Scholar

[36] Wacławek S, Silvestri D, Hrabák P, Padil VVT, Torres-Mendieta R, Wacławek M, et al. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. Water Res. 2019;162:302-19. DOI: 10.1016/j.watres.2019.06.072.10.1016/j.watres.2019.06.072Search in Google Scholar

[37] Sharma VK. Potassium ferrate(VI): an environmentally friendly oxidant. Adv Environ Res. 2002;6:143-56. DOI: 10.1016/S1093-0191(01)00119-8.10.1016/S1093-0191(01)00119-8Search in Google Scholar

[38] Jiang JQ. Advances in the development and application of ferrate(VI) for water and wastewater treatment. J Chem Technol Biotechnol. 2014;89:165-77. DOI: 10.1002/jctb.4214.10.1002/jctb.4214Search in Google Scholar

[39] Hrabák P, Homolková M, Wacławek S, Černík M. Chemical degradation of PCDD/F in contaminated sediment. Ecol Chem Eng S. 2016;23:473-82. DOI: 10.1515/eces-2016-0034.10.1515/eces-2016-0034Search in Google Scholar

[40] Walsh FC. Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl Chem. 2001;73:1819-37. DOI: 10.1351/pac200173121819.10.1351/pac200173121819Search in Google Scholar

[41] Jiang JQ, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res. 2002;36:1397-408. DOI: 10.1016/S0043-1354(01)00358-X.10.1016/S0043-1354(01)00358-XSearch in Google Scholar

[42] Systém evidence kontaminovaných míst » SEKM. Available from: http://www.sekm.cz/.Search in Google Scholar

[43] Licht S, Naschitz V, Halperin L, Halperin N, Lin L, Chen J, et al. Analysis of ferrate(VI) compounds and super-iron Fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization. J Power Sourc. 2001;101:167-76. DOI: 10.1016/S0378-7753(01)00786-8.10.1016/S0378-7753(01)00786-8Search in Google Scholar

[44] Patra D. Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons. Appl Spectrosc Rev. 2003;38:155-85. DOI: 10.1081/ASR-120021166.10.1081/ASR-120021166Search in Google Scholar

[45] Douglas GS, McCarthy KJ, Dahlen DT, Seavey JA, Steinhauer WG, Prince RC, et al. The use of hydrocarbon analyses for environmental assessment and remediation. J Soil Contamin. 1992;1:197-216. DOI: 10.1080/15320389209383411.10.1080/15320389209383411Search in Google Scholar

[46] Boehm PD. 15 - Polycyclic Aromatic Hydrocarbons (PAHs). In: Morrison RD, Murphy BL, editors. Environmental Forensics, Burlington: Academic Press; 1964. DOI: 10.1016/B978-012507751-4/50037-9.10.1016/B978-012507751-4/50037-9Search in Google Scholar

[47] Sharma VK. Disinfection performance of Fe(VI) in water and wastewater: a review. Water Sci Technol. 2007;55:225-32. DOI: 10.2166/wst.2007.019.10.2166/wst.2007.01917305144Search in Google Scholar

[48] 40 CFR 141.61 - Maximum contaminant levels for organic contaminants. USEPA, National Primary Drinking Water Regulations. 2002. Available from: https://www.law.cornell.edu/cfr/text/40/141.61.Search in Google Scholar

[49] Sharma VK, Kazama F, Jiangyong H, Ray AK. Ferrates (iron(VI) and iron(V)): Environmentally friendly oxidants and disinfectants. J Water Health. 2005;3:45-58. Available from: https://pubmed.ncbi.nlm.nih.gov/15952452/10.2166/wh.2005.0005Search in Google Scholar

[50] Yunho L, Cho M, Kim YJ, Yoon J. Chemistry of ferrate (Fe(VI)) in aqueouus solution and its applications as a green chemical. J Ind Eng Chem. 2004;10:161-171. Available from: https://www.cheric.org/research/tech/periodicals/view.php?seq=441272.Search in Google Scholar

[51] Baldantoni D, Morelli R, Bellino A, Prati MV, Alfani A, De Nicola F. Anthracene and benzo(a)pyrene degradation in soil is favoured by compost amendment: Perspectives for a bioremediation approach. J Hazard Mater. 2017;339:395-400. DOI: 10.1016/j.jhazmat.2017.06.043.10.1016/j.jhazmat.2017.06.04328672152Search in Google Scholar

[52] Cerniglia CE. Biodegradation of Polycyclic Aromatic Hydrocarbons. Microorganisms to Combat Pollution. Dordrecht: Springer; 1992. DOI: 10.1007/978-94-011-1672-5_16.10.1007/978-94-011-1672-5_16Search in Google Scholar

[53] Liao X, Zhao D, Yan X, Huling SG. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil. J Hazard Mater. 2014;276:26-34. DOI: 10.1016/j.jhazmat.2014.05.018.10.1016/j.jhazmat.2014.05.01824862467Search in Google Scholar

eISSN:
1898-6196
Language:
English