Cite

[1] Lewczuk B, Redlarski G, Żak A, Ziółkowska N, Przybylska-Gornowicz B, Krawczuk M. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge. Bio Med Res Int. 2014;169459. DOI: 10.1155/2014/169459.10.1155/2014/169459Search in Google Scholar

[2] Gemici M, Demiray H, Gemici Y. Effects of electromagnetic fields produced by high voltage transmission on physiology of Juglans regia L. and Cerasus avium L. Moensch Ege Üniv Ziraat Fak Derg. 2013;50(2):129-35. Available from: https://dergipark.org.tr/download/article-file/59435.Search in Google Scholar

[3] Biketi S, Kirui MSK, Mwonga S, Ngumbu R., Rono J. Effect of 50 Hz magnetic field on the chlorophyll content of Spinacia oleracea. 11th JKUAT Scientific, Technol Industrialization Conf. 2016;52. Available from: http://journals.jkuat.ac.ke/index.php/jscp/article/view/1328/1094.Search in Google Scholar

[4] Racuciu M, Creanga DE. Biological effects of low frequency electromagnetic field in Cucurbita pepo. Proc Third Moscow Int Symp Magnetism. 26-30 June 2005, Moscow, Russia. 2005;278-82. Available from: http://magn.ru/proc/pdf/278.pdf.Search in Google Scholar

[5] Michalak I, Lewandowska S, Niemczyk K, Detyna J, Bujak H, Arik P, et al. Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Eng Life Sci. 2019;19:986-99. DOI: 10.1002/elsc.201900039.10.1002/elsc.201900039Search in Google Scholar

[6] Nurbaity A, Nuraini A, Agustine E, Solihin MA, Setiawan A, Mbusango A. Enhanced seedling germination and growth of sorghum through pre-sowing seed magnetic field treatment. Int Seminar Congress Indonesian Soil Sci Soc. 2019. IOP Conf Series: Earth Environ Sci. 2019:393;012101. DOI: 10.1088/1755-1315/393/1/012101.10.1088/1755-1315/393/1/012101Search in Google Scholar

[7] Sudsiri ChJ, Jumpa N, Kongchana P, Ritchie RJ. Stimulation of oil palm (Elaeis guineensis) seed germination by exposure to electromagnetic fields. Sci Hortic. 2017:220:66-77. DOI: 10.1016/j.scienta.2017.03.036.10.1016/j.scienta.2017.03.036Search in Google Scholar

[8] Shrabangi A, Sheidai M, Majd A, NabIuni M, Dorranian D. Cytogenetic abnormalities caused by extremely low electromagnetic fields in canola. Sci Asia. 2010;36:292-6. DOI: 10.2306/scienceasia1513-1874.2010.36.292.10.2306/scienceasia1513-1874.2010.36.292Search in Google Scholar

[9] Dannehl D. Effects of electricity on plant responses. Sci Hortic. 2018;234:382-92. DOI: 10.1016/j.scienta.2018.02.007.10.1016/j.scienta.2018.02.007Search in Google Scholar

[10] Moon JD, Chung HS. Acceleration of germination of tomato seed by applying AC electric and magnetic fields. J Electrostat. 2000;48:103-14. DOI: 10.1016/S0304-3886(99)00054-6.10.1016/S0304-3886(99)00054-6Search in Google Scholar

[11] Molamofrad F, Lotfi M, Khazaei J, Tavakkol-Afshari R, Shaiegani-Akmal AA. The effect of electric field on seed germination and growth parameters of onion seeds (Allium cepa). Adv Crop Sci. 2013;3(4):291-8. Available from: https://www.researchgate.net/publication/236856128_The_effect_of_electric_field_on_seed_germination_and_growth_parameters_of_onion_seeds_Allium_cepa.Search in Google Scholar

[12] Janositz A, Knorr D. Microscopic visualization of pulsed electric field induced changes on plant cellular level. Innov Food Sci Emerg Technol. 2010;11(4):592-7. DOI: 10.1016/j.ifset.2010.07.004.10.1016/j.ifset.2010.07.004Search in Google Scholar

[13] Górski R, Kotwicka M, Skibińska I, Jendraszak M, Wosiński S. Effect of low-frequency electric field screening on motility of human sperm. Ann Agric Environ Med. 2020;27(3):427-34. DOI: 10.26444/aaem/116019.10.26444/aaem/11601932955226Search in Google Scholar

[14] Górski R, Nowak-Terpiłowska A, Śledziński P, Baranowski M, Wosiński S. Morphological and cytophysiological changes in selected lines of normal and cancer human cells under the influence of a radio-frequency electromagnetic field. Ann Agric Environ Med. 2019. DOI: 10.26444/aaem/118260.10.26444/aaem/11826033775083Search in Google Scholar

[15] Milham S. Historical evidence that electrification caused the 20th century epidemic of “diseases of civilization”. Medical Hypotheses. 2010;74(2):337-45. DOI: 10.1016/j.mehy.2009.08.032.10.1016/j.mehy.2009.08.03219748187Search in Google Scholar

[16] IARC (International Agency for Research on Cancer). Non-Ionizing Radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: 2002, volume 80. Lyon: IARC Press; 1-445. ISBN: 9789283215806. Available from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Non-ionizing-Radiation-Part-1-Static-And-Extremely-Low-frequency-ELF-Electric-And-Magnetic-Fields-2002.Search in Google Scholar

[17] C95.1-2019/Cor 1-2019 - IEEE approved draft standard for safety levels with respect to human exposure to electric, magnetic and electromagnetic fields, 0 Hz to 300 GHz - Corrigendum 1. IEEE Standards Association; 2019. Available from: https://standards.ieee.org/standard/C95_1-2019.html.Search in Google Scholar

[18] Wosiński S. Solution for impregnation of materials shielding low-frequency electric field and the shielding material. PAT.221223 Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010093270&tab=PCTBIBLIO.Search in Google Scholar

[19] Wosiński S. A composition for impregnating materials to shield against the effects of alternating electromagnetic fields, its application in coating/impregnating fibrous and/or porous matrices and materials containing the same. Patent application 20170349765; 2017. Available from: https://patents.justia.com/patent/20170349765.Search in Google Scholar

[20] Lancashire PD, Bleiholder H, Langeluddecke P, Stauss R, van den Boom T, Weber E, et al. A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol. 1991;119(3):561-601. DOI: 10.1111/j.1744-7348.1991.tb04895.x.10.1111/j.1744-7348.1991.tb04895.xSearch in Google Scholar

[21] Rodriguez IR, Miller GR. Using a chlorophyll meter to determine the chlorophyll concentration, nitrogen concentration, and visual quality of St. Augustine grass. HortSci. 2000;35:751-4. DOI: 10.21273/HORTSCI.35.4.751.10.21273/HORTSCI.35.4.751Search in Google Scholar

[22] Das R, Bhattacharya R. Impact of electromagnetic field on seed germination. Proc XXVIIIth URSI General Assembly, New Delhi, India, October 2005, ISBN: 8177649280, Paper KP.14(0983). Available from: www.ursi.org/proceedings/procGA05/pdf/KP.14(0983).pdf.Search in Google Scholar

[23] Rajendra P, Sujatha Nayak H, Sashidhar RB, Subramanyam C, Devendranath D, Gunasekaran B, et al. Effects of power frequency electromagnetic fields on growth of germianting Vicia faba L., the broad bean. Electromagn Biol Med. 2005;24:39-54. DOI: 10.1081/JBC-200055058.10.1081/JBC-200055058Search in Google Scholar

[24] Rochalska M, Orzeszko-Rywka A. Magnetic field treatment improves seed performance. Seed Sci Technol. 2005;33:669-74. DOI: 10.15258/sst.2005.33.3.14.10.15258/sst.2005.33.3.14Search in Google Scholar

[25] Fischer G, Tausz M, Köck M, Grill D. Effects of weak 16 2/3 magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics. 2004;25(8):638-41. DOI: 10.1002/bem.20058.10.1002/bem.2005815515029Search in Google Scholar

[26] Radhakrishnan R, Kumari BDR. Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiol Biochem. 2012;51:139-44. DOI: 10.1016/j.plaphy.2011.10.017.10.1016/j.plaphy.2011.10.01722153250Search in Google Scholar

[27] Podleśna A, Bojarszczuk J, Podleśny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. minor). J Pant Growth Regul. 2019;38:1153-60. DOI: 10.1007/s00344-019-09920-1.10.1007/s00344-019-09920-1Search in Google Scholar

[28] Yadav YM, Mahadik SG, Dalvi VV, Deogirikar AA, Burondkar MM, Vanave PB. Effect of magnetic treatment on enzyme activation of paddy (Oryza sativa L.). Int J Curr Microbiol App Sci. 2018;7(10):3573-81. DOI: 10.20546/ijcmas.2018.710.414.10.20546/ijcmas.2018.710.414Search in Google Scholar

[29] Cakmak T, Dumlupinar R, Erdal S. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 2009;31(2):120-9. DOI: 10.1002/bem.20537.10.1002/bem.2053719681058Search in Google Scholar

[30] De Souza A, Sueiro L, García D, Porras E. Extremely low frequency non-uniform magnetic fields improve tomato seed germination and early seedling growth. Seed Sci Technol. 2010;38:61-72. DOI: 10.15258/sst.2010.38.1.06.10.15258/sst.2010.38.1.06Search in Google Scholar

[31] Carbonell MV, Flórez M, Martínez E, Maqueda R, Amaya JM. Study of stationary magnetic fields on initial growth of pea (Pisum sativum L.) seeds. Seed Sci Technol. 2011;39(3):673-9. DOI: 10.15258/sst.201139.3.15.Search in Google Scholar

[32] Mroczek-Zdyrska M, Tryniecki Ł, Kornarzyński K, Pietruszewski S, Gagoś M. Influence of magnetic field stimulation on the growth and biochemical parameters in Phaseolus vulgaris L. J Microbiol Biotech Food Sci. 2016;5(6):548-51. DOI: 10.15414/jmbfs.2016.5.6.548-551.10.15414/jmbfs.2016.5.6.548-551Search in Google Scholar

[33] Serdyukov YA, Novitskii YI. Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings. Russ. J Plant Physiol. 2013;60(1):69-76. DOI: 10.1134/S1021443713010068.10.1134/S1021443713010068Search in Google Scholar

[34] Soja G, Kunsch B, Gerzabek M, Reichenauer T, Soja AM, Rippar G, et al. Growth and yield of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) near a high voltage transmission line. Bioelectromagnetics. 2003;24(2):91-102. DOI: 10.1002/bem;.10069.Search in Google Scholar

[35] Levina NS, Tertyshnaya YV, Bidey IA, Elizarova OV, Shibryaeva LS. Presowing treatment of seeds of spring wheat with low-frequency electromagnetic field. Agricult Biol. 2017;52(3):580-7. DOI: 10.15389/agrobiology.2017.3.580eng.10.15389/agrobiology.2017.3.580engSearch in Google Scholar

[36] Nader A, Touraj MM, Nader J. Effects of electromagnetic field and ultrasonic waves on seed germination, seedling characteristics and essence percent of thymes (Thymus vulgaris L.). J Crop Ecophysiol (Agricult Sci). 2019;13(1):57-72. Available from: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=724037.Search in Google Scholar

[37] Jedlička J, Paulen O, Ailer Š. Research of effect of low frequency magnetic field on germination, growth and fruiting of field tomatoes. Acta Horticulturae et Regiotecturae. 2015;1:1-4. DOI: 10.1515/ahr-2015-0001.10.1515/ahr-2015-0001Search in Google Scholar

[38] Schmiedchen K, Petri AK, Driessen S, Bailey WH. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants. Environ Res. 2018;160:60-76. DOI: 10.1016/j.envres.2017.09.013.10.1016/j.envres.2017.09.01328963966Search in Google Scholar

[39] Dorna H, Górski R, Szopińska D, Tylkowska K, Jurga J, Wosiński S, et al. Effects of a permanent magnetic field together with the shielding of an alternating electric field on carrot seed vigour and germination. Ecol Chem Eng S. 2010;17(1):53-61. Available from: https://drive.google.com/file/d/1IfsFlFVf3-2vO1OlkNuu09220UjUAwWs/view.Search in Google Scholar

eISSN:
1898-6196
Language:
English