Open Access

Indoor Air Quality Assessment in a Single-Family House Equipped with Demand Controlled Mechanical Ventilation


Cite

[1] Polska Norma (Polish Standard) PN-83/B-03430/Az3: Wentylacja w budynkach mieszkalnych zamieszkania zbiorowego i użyteczności publicznej (Ventilation in public and residential buildings). Available from: https://sklep.pkn.pl/pn-b-03430-1983-az3-2000p.html.Search in Google Scholar

[2] ANSI/ASHRAE Standard 62.1-2019 Ventilation for Acceptable Indoor Air Quality 1791 Tullie Circle NE, Atlanta, GA. Available from: www.ashrae.org.Search in Google Scholar

[3] Mijakowski M, Sowa J. An attempt to improve indoor environment by installing humidity-sensitive air inlets in a naturally ventilated kindergarten building, Building Environ. 2017;111:180-91. DOI: 10.1016/j.buildenv.2016.11.013.10.1016/j.buildenv.2016.11.013Search in Google Scholar

[4] Wallner P, Munoz U, Tappler P, Wanka A, Kundi M, Shelton JF, et al. Indoor environmental quality in mechanically ventilated, energy-efficient buildings vs. conventional buildings. Int J Environ Res Public Health. 2015;12(11):14132-47. DOI: 10.3390/ijerph121114132.10.3390/ijerph121114132466163726561823Search in Google Scholar

[5] Nielsen TR, Drivsholm C. Energy efficient demand controlled ventilation in single family houses. Energy Buildings. 2010;42:1995-8. DOI: 10.1016/j.enbuild.2010.06.006.10.1016/j.enbuild.2010.06.006Search in Google Scholar

[6] Evola G, Gagliano A, Marletta L, Nocera F. Controlled mechanical ventilation systems in residential buildings: Primary energy balances and financial issues. J Building Eng. 2017;11:96-107. DOI: 10.1016/j.jobe.2017.04.010.10.1016/j.jobe.2017.04.010Search in Google Scholar

[7] Laverge J, Van Den Bossche N, Heijmans N, Janssens A. Energy saving potential and repercussions on indoor air quality of demand controlled residential ventilation strategies. Build Environ. 2011;46:1497-503. DOI: 10.1016/j.buildenv.2011.01.023.10.1016/j.buildenv.2011.01.023Search in Google Scholar

[8] Shin MS, Rhee KY, Lee ET, Jung GJ. Performance evaluation of CO2-based ventilation control to reduce CO2 concentration and condensation risk in residential buildings. Building Environ. 2018;142:451-63. DOI: 10.1016/j.buildenv.2018.06.042.10.1016/j.buildenv.2018.06.042Search in Google Scholar

[9] Woradechjumroen D, Tongshoob T. Investigations of stack ventilation operations using an energy modelling and the bas system. IOP Conf. Series: Materials Sci Eng. 2020. DOI: 10.1088/1757-899X/886/1/012040.10.1088/1757-899X/886/1/012040Search in Google Scholar

[10] Widiastuti R, Hasan MI, Bramiana CN, Pramesti PU. CFD simulation on the natural ventilation and building thermal performance. IOP Conf Series: Earth Environ Sci. 2020. DOI: 10.1088/1755-1315/448/1/0120041.10.1088/1755-1315/448/1/012004Search in Google Scholar

[11] Jiang C, Soh YC, Masooda MK, Li H. Indoor occupancy estimation from carbon dioxide concentration. Energy Buildings. 2016;131:132-41. DOI: 10.1016/j.enbuild.2016.09.002.10.1016/j.enbuild.2016.09.002Search in Google Scholar

[12] Ioannou A, Itard L. In-situ and real time measurements of thermal comfort and its determinants in thirty residential dwellings in the Netherlands. Energy Buildings. 2017;139:487-505. DOI: 10.1016/j.enbuild.2017.01.050.10.1016/j.enbuild.2017.01.050Search in Google Scholar

[13] Zender-Świercz E. Analysis of the impact of the parameters of outside air on the condition of indoor air. Int J Environ Sci Technol. 2017;14:1-8. DOI: 10.1007/s13762-017-1275-5.10.1007/s13762-017-1275-5Search in Google Scholar

[14] Cichowicz R, Wielgosiński G. Effect of meteorological conditions and building location on CO2 concentration in the university campus. Ecol Chem Eng S. 2015;22(4):513-25. DOI: 10.1515/eces-2015-0030.10.1515/eces-2015-0030Search in Google Scholar

[15] Cichowicz R, Wielgosiński G, Targaszewska A. Analysis of CO2 concentration distribution inside and outside small boiler plants. Ecol Chem Eng S. 2016;23(1):49-60. DOI: 10.1515/eces-2016-0003.10.1515/eces-2016-0003Search in Google Scholar

[16] Cichowicz R, Wielgosiński G. Effect of urban traffic on the immision of carbon dioxide in the university campus. Ecol Chem Eng S. 2015;22(2):189-200. DOI: 10.1515/eces-2015-0010.10.1515/eces-2015-0010Search in Google Scholar

[17] Gładyszewska-Fiedoruk K, Ruiz de Adana M. Improving the effectiveness of stack ventilation by supplying an outdoor air stream. OP Conf Series: Materials Sci Eng. 2020; DOI: 10.1088/1757-899X/809/1/012008.10.1088/1757-899X/809/1/012008Search in Google Scholar

[18] Lei1 J, Chen H, Song R. Study on design strategies about single-sided natural ventilation in residential buildings. IOP Conf. Series: Earth Environ Sci. 2020; DOI: 10.1088/1755-1315/527/1/0120141.10.1088/1755-1315/527/1/012014Search in Google Scholar

[19] WMO Greenhouse Gas Bulletin (GHG Bulletin) - No. 13: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016; 2017. Available from: https://library.wmo.int/doc_num.php?explnum_id=4022.Search in Google Scholar

[20] Müller J, Skrzyniowska D. Indoor Air Quality Problems in Passive Buildings. Proc 23rd IIR Int Congress Refrigeration: Prague, Czech Republic. August 21-26, 2011. Available from: https://iifiir.org/en/fridoc/28202.Search in Google Scholar

[21] EN 15251. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Available from: https://sklep.pkn.pl/pn-en-15251-2012p.html.Search in Google Scholar

[22] Emmerich SJ. Validation of multizone IAQ modeling of residential-scale buildings: a review. ASHRAE Trans Cincinnati. 2001 ASHRAE; 619-28. Available from: https://www.researchgate.net/publication/279555937_Validation_of_multizone_IAQ_modeling_of_residential-scale_buildings_A_review.Search in Google Scholar

[23] Verijkazemi K, Mansouri N, Moattar F, Khezri M. Evaluation of indoor PM distribution by CONTAM airflow model and real time measuring: Model description and validation. Avicenna J Environ Health Eng. 2018;5:42-9. DOI: 10.15171/ajehe.2018.06.10.15171/ajehe.2018.06Search in Google Scholar

[24] Barbosa BPP, Brum NDCL. Validation and assessment of the CFD-0 module of CONTAM software for airborne contaminant transport simulation in laboratory and hospital applications. Building Environ. 2018;142:139-52. DOI: 10.1016/j.buildenv.2018.06.013.10.1016/j.buildenv.2018.06.013Search in Google Scholar

[25] Heibati S, Maref W, Saber H. Building energy and IAQ improvement by coupled model. IOP Conf Ser Mater Sci Eng. 2019; DOI: 10.1088/1757-899X/609/4/042102.10.1088/1757-899X/609/4/042102Search in Google Scholar

[26] Emmerich SJ. Validation of CONTAMW predictions for tracer gas in a townhouse. IBPSA, editor. 8th Int IBPSA Conf Eindhoven: IBPSA. 2003:299-306. Available from: http://www.ibpsa.org/proceedings/BS2003/BS03_0299_306.pdf.Search in Google Scholar

[27] Delsante A, Aggerholm S. The use of simulation tools to evaluate hybrid ventilation control strategies. Annex 35. Technical Report. IEA/ECBCS; 2002. Available from: https://www.ieaebc.org/Data/publications/EBC_Annex_35_tsr.pdf.Search in Google Scholar

[28] Bossche Van den N, Janssens A, Heijmans N, Wouters P. Performance evaluation of humidity controlled ventilation strategies in residential buildings. In: Thermal Performance of the Exterior Envelopes of Whole Buildings X. 2007; ASHRAE, Clearwater Beach, FL, USA, p. 7. Available from: https://web.ornl.gov/sci/buildings/conf-archive/2007%20B10%20papers/195_Bossche.pdf.Search in Google Scholar

[29] Seong NC. Energy requirements of a multi-sensor based demand control ventilation system in residential buildings. 31st AIVC Conf Low Energy and Sustainable Ventilation Technologies for Green Buildings. 2010. Available from: https://www.aivc.org/sites/default/files/7B-2.pdf.Search in Google Scholar

[30] ASHRAE Fundamentals, American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. Tullie Circle, N.E., Atlanta, GA: 2009. Available from: http://www.ashrae.org.Search in Google Scholar

[31] Fanger PO. Introduction of the olf and the decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy Buildings. 1988;12(1):1-6. DOI: 10.1016/0378-7788(88)90051-5.10.1016/0378-7788(88)90051-5Search in Google Scholar

[32] Fanger PO, Lauridsen J, Bluyssen P, Clausen G. Air pollution sources in offices and assembly halls, quantified by the olf unit. Energy Buildings. 1988;12(1):7-19. DOI: 10.1016/0378-7788(88)90052-7.10.1016/0378-7788(88)90052-7Search in Google Scholar

[33] Zender-Świercz E. Improving the indoor air quality using the individual air supply system. Int J Environ Sci Technol. 2018;15:689-96. DOI: 10.1007/s13762-017-1432-x.10.1007/s13762-017-1432-xSearch in Google Scholar

[34] Ben-David T, Waring MS. Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Building Environ. 2017;104:320-36. DOI: 10.1016/j.buildenv.2016.05.007.10.1016/j.buildenv.2016.05.007Search in Google Scholar

eISSN:
1898-6196
Language:
English