Cite

[1] Stec A, Słyś D. Rainwater potential use in dormitory building: drinking water savings and economic costs. Ecol Chem Eng A. 2017;24(1):43-64. DOI: 10.2428/ecea.2017.24(1)4.Search in Google Scholar

[2] Managing Urban Runoff. Available from: http://www.epa.gov/polluted-runoff-nonpoint-source-pollution.Search in Google Scholar

[3] Reddy KR, Xie T, Dastgheibi S. Removal of heavy metals from urban stormwater runoff using different filter materials. J Environ Chem Eng. 2014;2(1):282-92. DOI: 10.1016/j.jece.2013.12.020.10.1016/j.jece.2013.12.020Search in Google Scholar

[4] Ghofrani Z, Sposito V, Faggian R. Designing a pond and evaluating its impact upon storm-water quality and flow: A case study in rural Australia. Ecol Chem Eng S. 2019;26(3):475-91. DOI: 10.1515/eces-2019-0036.10.1515/eces-2019-0036Search in Google Scholar

[5] Ambrose RF, Winfrey BK. Comparison of stormwater biofiltration systems in Southeast Australia and Southern California. WIREs Water. 2015;2(2):131-46. DOI: 10.1002/wat2.1064.10.1002/wat2.1064Search in Google Scholar

[6] Stormwater Program. Available from: http://www.epa.gov/npdes/npdes-stormwater-program.Search in Google Scholar

[7] Claytor RA, Schueler TR. Design of Stormwater Filtering Systems. The Center for Watershed Protection. Ellicott City, MD. 1996; Available from: https://owl.cwp.org/mdocs-posts/design-of-sw-filtering-systems/.Search in Google Scholar

[8] Garzón-Zúñiga MA, Tomasini-Ortíz AC, Moeller-Chavez G, Hornelas-Uribe Y, Buelna G, Mijaylova-Nacheva P. Enhanced pathogen removal in on-site biofiltration systems over organic filtration materials. Water Practice Technol. 2008;3(2): wpt2008053. DOI: 10.2166/wpt.2008.053.10.2166/wpt.2008.053Search in Google Scholar

[9] Ilyas A, Muthanna TM. Assessment of upscaling potential of alternative adsorbent materials for highway stormwater treatment in cold climates. Environ Technol. 2017;38(6):705-17. DOI: 10.1080/09593330.2016.1209567.10.1080/09593330.2016.120956727377150Search in Google Scholar

[10] Lim HS, Lim W, Hu JY, Ziegler A, Ong SL. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. J Environ Manage. 2015;147:24-33. DOI: 10.1016/j.jenvman.2014.04.042.10.1016/j.jenvman.2014.04.04225261749Search in Google Scholar

[11] Morgenroth E, Arvin E, Vanrolleghem P. The use of mathematical models in teaching wastewater treatment engineering, Water Sci Technol. 2002;45(6):229-33. DOI: 10.2166/wst.2002.0110.10.2166/wst.2002.0110Search in Google Scholar

[12] Novak M, Horvat P. Mathematical modelling and optimisation of a waste water treatment plant by combined oxygen electrode and biological waste water treatment model, Appl Mathematical Modell. 2012;36:3813-25. DOI: 10.1016/j.apm.2011.11.028.10.1016/j.apm.2011.11.028Search in Google Scholar

[13] Bomba A, Safonyk A. Mathematical modeling of aerobic wastewater treatment in porous medium. Zesz Nauk Wyższej Szkoły Informatyki. 2013;12(1):21-9. Available from: http://wsinf.edu.pl/assets/img/pdf/Zeszyty%20naukowe/vol.12/art02.pdf.Search in Google Scholar

[14] Niec J, Spychala M, Zawadzki P. New approach to modelling of sand filter clogging by septic tank effluent, J Ecol Eng. 2016;17(2):97-107. DOI 10.12911/22998993/62296.10.12911/22998993/62296Search in Google Scholar

[15] Pozniak N, Sakalauskas L, Saltyte L. Kriging Model with Fractional Euclidean Distance Matrices. Informatica. 2019;30(2):367-90. Available from: https://content.iospress.com/articles/informatica/inf1222.10.15388/Informatica.2019.210Search in Google Scholar

[16] Hu J, Chen G, Lo IHC. Selective removal of heavy metals from industrial wastewater using maghemite nanoparticles: Performance and mechanisms. J Environ Eng. 2006;132(7):709-15. DOI: 10.1061/(ASCE)0733-9372(2006)132:7(709).10.1061/(ASCE)0733-9372(2006)132:7(709)Search in Google Scholar

[17] Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537-41. DOI: 10.1126/science.1200770.10.1126/science.120077021566159Search in Google Scholar

[18] Beck DA, Johnson GR, Spolek GA. Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ Pollut. 2011;159:2111-8. DOI: 10.1016/j.envpol.2011.01.022.10.1016/j.envpol.2011.01.02221320738Search in Google Scholar

[19] Hina K. Application of biochar technologies to wastewater treatment [PhD]. New Zealand: Massey University; 2013. Available from: https://mro.massey.ac.nz/handle/10179/4288.Search in Google Scholar

[20] Khare P, Dilshad U, Rout PK, Yadav V, Jain S. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions. Arab J Chem. 2013;10:S3054-63. DOI: 10.1016/j.arabjc.2013.11.047.10.1016/j.arabjc.2013.11.047Search in Google Scholar

[21] Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage. 2012;106:61-9. DOI: 10.1016/j.jenvman.2012.04.047.10.1016/j.jenvman.2012.04.04722687632Search in Google Scholar

[22] Gnecco I, Berretta C, Lanza LG, La Barbera P. Storm water pollution in the urban environment of Genoa, Italy. Atmosph Res. 2005;77:60-73. DOI: 10.1016/j.atmosres.2004.10.017.10.1016/j.atmosres.2004.10.017Search in Google Scholar

[23] Schmidt HP. 55 uses of biochar. Ithaka J. 2012;1(1):286-9. Available from: https://www.terrapreta.bioenergylists.org/files/e082012-55-uses-of-bc.pdf.Search in Google Scholar

[24] ISO 3696:1987 - Water for analytical laboratory use. Specification and test methods (null water for analytical laboratory use - Specification and test methods). Available from: https://www.iso.org/standard/9169.html.Search in Google Scholar

[25] Jones DR. A taxonomy of global optimization methods based on response surfaces. J Global Optimization. 2001;21(4):345-83. DOI: 10.1023/A:1012771025575.10.1023/A:1012771025575Search in Google Scholar

[26] Carpio R, Giordano RC, Secchi A. Enhanced surrogate assisted global optimization algorithm based on maximizing probability of improvement. Computer Aided Chem Eng. 2017;40:2065-70. DOI: 10.1016/B978-0-444-63965-3.50346-9.10.1016/B978-0-444-63965-3.50346-9Search in Google Scholar

[27] Sakalauskas L. Locally Homogeneous and isotropic Gaussian fields in Kriging. Informatica. 2013;24(2):253-74. Available from: https://www.mii.lt/INFORMATICA/pdf/INFO904.pdf.10.15388/Informatica.2013.395Search in Google Scholar

[28] Pozniak N, Sakalauskas L. Fractional Euclidean distance matrices extrapolator for scattered data. JMD. 2017;2(47):56-61. DOI: 10.21277/jmd.v47i2.156.10.21277/jmd.v47i2.156Search in Google Scholar

eISSN:
1898-6196
Language:
English