Cite

[1] Kanduč T, Mori N, Kocman D, Stibilj V, Grassa F. Hydrogeochemistry of Alpine springs from North Slovenia: Insights from stable isotopes. Chem Geol. 2012;300-301:40-54. DOI: 10.1016/j.chemgeo.2012.01.012.10.1016/j.chemgeo.2012.01.012Search in Google Scholar

[2] Rutkowski D. Badania stopnia zeutrofizowania jezior Wolińskiego Parku Narodowego o różniącej się genezie na przykładzie jeziora Turkusowego i jeziora Gardno. MSc Thesis. Typography. Szczecin: Akademia Rolnicza w Szczecinie; 1987.Search in Google Scholar

[3] Chałupka M, Graf R, Kaniecka D, Wrzesiński D. Batymetria, termika i chemizm wód jeziora Turkusowego. In: Środowisko przyrodnicze i przestrzenna struktura społeczno-ekonomiczna miasta i gminy Międzyzdroje (monografia geograficzna). Kostrzewski A, editor. Poznań: Wyd. UAM; 1989; 231-240.Search in Google Scholar

[4] Raczyńska M, Kubiak J. Hydrochemical conditions in lakes of the „Puszcza Bukowa” Szczecin Landscape Park. Acta Sci Pol. Piscaria. 2003;2(2):91-116.Search in Google Scholar

[5] Poleszczuk G. Równowagi węglanowe w wodach jezior w strefie porwaków kredowych na wyspie Wolin. Parki Nar Rez Przyr. 1994;13:75-84.Search in Google Scholar

[6] Kubiak J, Machula S. Water thermal regimes in selected antropogenic reservoirs in Western Pomerania. Oceanol Hydrobiol Stud. 2013;42(2):155-163. DOI: 10.2478/s13545-013-0069-8.10.2478/s13545-013-0069-8Search in Google Scholar

[7] Poleszczuk G, Bucior A, Grzegorczyk K, Suzin B. Water of springs in Trzciągowska Valley (Buffer protection zone and areas of Wolin National Park) - results of chemical investigations. Ecol Chem Eng. 2005;12:1267-1279.Search in Google Scholar

[8] APHA. Standard methods for examination of water and wastewater. 16th ed. Washington: 1985.Search in Google Scholar

[9] Nemerow NL. Stream, Lake, Estuary and Ocean Pollution. New York: Van Nostrand Reinhold; 1995.Search in Google Scholar

[10] Schüring J, Schulz HD, Fischer WR, Böttcher J, Duijnisveld WHM. Redox. Fundamentals, Processes and Applications. Berlin/Heidelberg: Springer; 2000. DOI: 10.1007/978-3-662-04080-5.10.1007/978-3-662-04080-5Search in Google Scholar

[11] Barragués JI, Morais A, Guisasola J. Probability and statistics - A didactics introduction. Boca Raton (Florida, USA): CRC Press Taylor & Francis Group; 2014.10.1201/b16436-3Search in Google Scholar

[12] Dojlido J, Best GA. Chemistry of Water and Water Pollution. New York: Ellis Horwood Ltd.; 1993.Search in Google Scholar

[13] OECD. Eutrophication of waters: monitoring, assessment and control. Paris: OECD Publications and Information Center; 1982.Search in Google Scholar

[14] Lampert W, Sommer U. Limnoökologie. Stuttgart: Springer; 1999.Search in Google Scholar

[15] Sø HU, Postma D, Jakobsen R, Larsen F. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochim Cosmochim Acta. 2011;75:2911-2923. DOI: 10.1016/j.gca.2011.02.031.10.1016/j.gca.2011.02.031Search in Google Scholar

[16] Wang Q, Li Y. Prosphorus adsorption and desorption behavior on sediments of different origins. J Soils Sediments. 2010;10:1159-1173. DOI 10.1007/s11368-010-0211-9.10.1007/s11368-010-0211-9Search in Google Scholar

[17] Jalail M, Peikam EN. Phosphorus sorption-desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Environ Monit Assess. 2013;185:537-552. DOI 10.1007/s10661-012-2573-5.10.1007/s10661-012-2573-522422213Search in Google Scholar

[18] Morse JW, Arvidson RS, Lüttge A. Calcium carbonate formation and dissolution. Chem Rev. 2007;107(2):342-381. DOI: 10.1021/cr050358j.10.1021/cr050358j17261071Search in Google Scholar

[19] Girjatowicz JP. The relationship of the North Altanctic Oscillation to water temperature along the southern Baltic Sea Coast. Int J Climatol. 2008;28:1071-1081 DOI: 10.1002/joc.1618.10.1002/joc.1618Search in Google Scholar

[20] Plauškaitė K, Ulevicius V, Špirkauskaitė N, Byčenkienė S, Zieliński T, Petelski T, et al. Observations of new particle formation events in the south-eastern Baltic Sea. Oceanologia. 2010;52(1):53-75. DOI:10.5697/oc.52-1.053.10.5697/oc.52-1.053Search in Google Scholar

[21] Leck C, Larsson U, Bågander LE, Johansson S, Hajdu S. Dimethyl sulfide in the Baltic Sea: Annual variability in relation to biological activity. J Geophys Res. 2012;95(C3):3353-3363. DOI: 10.1029/JC095iC03p03353.10.1029/JC095iC03p03353Search in Google Scholar

[22] Poleszczuk G, Jakuczun B. Pomiary suchego depozytu dwutlenku siarki, tlenków azotu, lotnych związków fluoru oraz opadu pyłów w lasach Wolińskiego Parku Narodowego. Ecol Chem Eng. 1996;3:197-211.Search in Google Scholar

[23] Kaczor D. The salinity of groundwater in Mesozoic and Cenozoic aquifers of NW Poland - origin and evolution. Stud Geol Polonica. 2006;126:5-76. http://sgp.ing.pan.pl/126_pdf/SGP126_005-076.pdf.Search in Google Scholar

[24] Koretsky CM, MacLeod A, Sibert RJ, Snyder C. Redox stratification and salinization of three kettle lakes in Southwest Michigan, USA. Water Air Soil Pollut. 2012; 223:1415-1427. DOI: 10.1007/s11270-011-0954-y.10.1007/s11270-011-0954-ySearch in Google Scholar

[25] Muruganandham M, Suri RPS, Jafari Sh, Sillanpää M, Lee GJ, Wu JJ, et al. Recent developments in homogeneous Advanced oxidation processes for water and wastewater treatment. Int J Photoenergy. 2014; Article ID 821674, 21 pages. http://dx.doi.org/10.1155/2014/821674.10.1155/2014/821674Search in Google Scholar

[26] Meunier L, Laubscher H, Hug SJ, Sulzberger B. Effects of size and origin of natural dissolved organic matter compounds on the redox cycling of iron in sunlit surface waters. Aquat Sci. 2005;67:292-307. DOI: 10.1007/s00027-005-0779-0.10.1007/s00027-005-0779-0Search in Google Scholar

eISSN:
1898-6196
Language:
English