Cite

[1] www.unep.org/vacancies/Search in Google Scholar

[2] Tsydenova O, Bengtsson M. Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manage. 2011;31(1):45-58. DOI: 10.1016/j.wasman.2010.08.014.10.1016/j.wasman.2010.08.014Search in Google Scholar

[3] Santos MC, Nóbrega JA, Baccan N, Cadore S. Determination of toxic elements in plastics from waste electrical and electronic equipment by slurry sampling electrothermal atomic absorption spectrometry. Talanta. 2010;81(4-5):1781-1787. DOI: 10.1016/j.talanta.2010.03.038.10.1016/j.talanta.2010.03.038Search in Google Scholar

[4] Johnson J, Harper EM, Lifset R, Graedel TE. Dining at the periodic table: Metals concentrations as they relate to recycling. Environ Sci Technol. 2007;41(5):1759-1765. DOI: 10.1021/es060736h.10.1021/es060736hSearch in Google Scholar

[5] Hwahg JS. (Ed). Environment-friendly Electronics: Lead-free Technology. Electrochemical Publications Ltd. Port Erin. UK 2001;97-105.Search in Google Scholar

[6] George E, Das D, Osterman M, Pecht M. Thermal cycling reliability of lead-free solders (SAC305 and Sn3.5Ag) for high-temperature applications. IEEE Transactions on Device and Materials Reliability. 2011;11(2):328-338. DOI: 10.1109/TDMR.2011.2134100.10.1109/TDMR.2011.2134100Search in Google Scholar

[7] Sulima OV, Bett AW. Fabrication and simulation of GaSb termophotovoltaic cells. Solar Energy Mater and Solar Cells. 2001;66(1-4):533-540. DOI: 10.1016/S0927-0248(00)00235-X.10.1016/S0927-0248(00)00235-XSearch in Google Scholar

[8] Luca S, Santailler J. L, Rothman J, Belle JP, Calvat C, Basset G, Passero A, Khvostikov VP, Potapovich NS, Levin RV. GaSb crystals and wafers for photovoltaic devices. J Sol Energ.-T. ASME. 2007;129(3):304-311. DOI: 10.1115/1.2734570.10.1115/1.2734570Search in Google Scholar

[9] Adjadj F, Belbacha E, Bouharkat M, Kerboub A. Crystallographic study of the intermediate compounds SbZn, Sb3Zn4 and Sb2Zn3. J Alloy Compd. 2006;419(1-2):267-270. DOI: 10.1016/j.jallcom.2005.09.068.10.1016/j.jallcom.2005.09.068Search in Google Scholar

[10] Nakajima K, Takeda O, Miki T, Nagasaka T. Evaluation method of metal resource recoverability of based on thermodynamic analysis. J Jpn I Met. 2009;73(10):794-801. DOI: 10.2320/jinstmet.73.794.10.2320/jinstmet.73.794Search in Google Scholar

[11] Chancerel P, Rotter S. Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manage. 2009;9(8):336-2352. DOI: 10.1016/j.wasman.2009.04.003.10.1016/j.wasman.2009.04.00319427188Search in Google Scholar

[12] Wäger PA, Hischier R, Eugster M. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE). Sci Total Environ. 2011;409(10):1746-1756. DOI: 10.1016/j.scitotenv.2011.01.050.10.1016/j.scitotenv.2011.01.05021342702Search in Google Scholar

[13] Luo HJ, Liu AM, Xu F, Weng ZK. Progress on theories and experiments of Zn-diffusion in fabricating GaSb cells. Gongneng Cailiao/J of Functional Mater. 2006;37:315-319.Search in Google Scholar

[14] Baldini M, Ghezzi C, Parisini A, Tarricone L, Vantaggio S, Gombia E, Motta A, Gasparotto A. Growth and characterization of buried GaSb p-n junctions for photovoltaic applications. Crystal Res and Technol. 2011;46(8):852-856. DOI: 10.1002/crat.201000639.10.1002/crat.201000639Search in Google Scholar

[15] Bracht H, Nicols SP, Haller EE, Silveira JP, Briones F. Self-diffusion in 69Ga121Sb/71Ga123Sb isotope heterostructures. J Appl Phys. 2001;89(10):5393-5399. DOI: 10.1063/1.1363683.10.1063/1.1363683Search in Google Scholar

[16] Ye H, Tang L.L, Ma Y.L. Experimental and theoretical investigation of zinc diffusion in N-GaSb. Chinese Sci Bull. 2010;55(23):2489-2496. DOI: 10.1007/s11434-010-4037-z.10.1007/s11434-010-4037-zSearch in Google Scholar

[17] Gaied I, Abroug S, Yacoubi N. Investigation of thermal diffusivity of doped and undoped GaSb by the Photothermal Deflection Technique. Phys Procedia. 2009;2(3):859-864. DOI: 10.1016/j.phpro.2009.11.036.10.1016/j.phpro.2009.11.036Search in Google Scholar

[18] Nicols SP, Bracht H, Benamara M, Liliental-Weber Z, Haller EE. Mechanism of zinc diffusion in gallium antimonide. Phys B: Condensed Matter. 2001;308-310:854-857. DOI: 10.1016/S0921-4526(01)00913-9.10.1016/S0921-4526(01)00913-9Search in Google Scholar

[19] Zheng Q, Ye H, Tang L. Experimental investigation on the mechanism of zinc diffusion in tellurium doped gallium antimonide. Taiyangneng Xuebao/Acta Energiae Solaris Sinica. 2011;32(1):35-40.Search in Google Scholar

[20] Sridaran S, Chavan A, Dutta PS. Fabrication and passivation of GaSb photodiodes. J of Crystal Growth. 2008;310(7-9):1590-1594. DOI: 10.1016/j.jcrysgro.2007.11.186.10.1016/j.jcrysgro.2007.11.186Search in Google Scholar

[21] Milosavljević A, Živković DT, Manasijević DM, Talijan NM, Ćosović VR, Grujić AS, Marjanović BR. Phase diagram investigation and characterisation of ternary Sn-In-Me (Me = Ag, Cu) lead-free solder systems. Internat J of Mater & Product Technol. 2010;39(1-2):95-107. DOI: 10.1504/IJMPT.2010.034263.10.1504/IJMPT.2010.034263Search in Google Scholar

[22] Muumlllera WH, Hauck T. Simple methods for the durability assessment of microelectronic solders. Mechanics of Advanced Mater and Structur. 2008;15(6-7):485-498. DOI: 10.1080/15376490802142437.10.1080/15376490802142437Search in Google Scholar

[23] Li Y, Richardson JB, Niu X, Jackson OJ, Laster JD, Walker AK. Dynamic leaching test of personal computer components. J Hazard Mater. 2009;171(1-3):1058-1065. DOI: 10.1016/j.jhazmat.2009.06.113.10.1016/j.jhazmat.2009.06.11319616380Search in Google Scholar

[24] Socolofa ML, Geibigb JR. Evaluating human and ecological impacts of a product life cycle: The complementary roles of life-cycle assessment and risk assessment. An Internat J. 2006;12(3):510-527. DOI: 10.1080/10807030600582796.10.1080/10807030600582796Search in Google Scholar

[25] Dervišević I, Todorović A, Talijan N, Dokić J. Experimental investigation and thermodynamic calculation of the Ga-Sb-Zn phase diagram. J Mater Sci. 2010;45(10):2725-2731. DOI: 10.1007/s10853-010-4258-1.10.1007/s10853-010-4258-1Search in Google Scholar

[26] Kroupa A, Dinsdale AT, Watson A, Vrestal J, Vizdal J, Zemanova A. The development of the COST 531 lead-free solders thermodynamic database. JOM Journal of the Minerals, Metals and Materials Society. 2007;59(7):20-25. DOI: 10.1007/s11837-007-0084-6.10.1007/s11837-007-0084-6Search in Google Scholar

[27] Vešťál J, Štrof J, Pavlů J. Extension of SGTE data for pure elements to zero Kelvin temperature - A case study. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry. 2012;37:37-48. DOI: 10.1016/j.calphad.2012.01.003.10.1016/j.calphad.2012.01.003Search in Google Scholar

[28] Kolarevic M. Regresioni model. Brzi razvoj proizvoda. Beograd: Zadužbina Andrejević; 2004.Search in Google Scholar

[29] Yamamoto N, Makino H, Osone S, Ujihara A, Ito T, Hokari H, Maruyama T, Yamamoto T. Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels. Thin Solid Films. 2012;520(12):4131-4138. DOI: 10.1016/j.tsf.2011.04.067.10.1016/j.tsf.2011.04.067Search in Google Scholar

[30] Salhofer S, Spitzbart M, Maurer K. Recycling of flat screens as a new challenge. Proceedings of Institution of Civil Engineers: Waste and Resour Manage. 2012;165(1):37-43. DOI: 10.1680/warm.2012.165.1.37.10.1680/warm.2012.165.1.37Search in Google Scholar

[31] Ye H, Xue S, Luo J, Li Y. Properties and interfacial microstructure of Sn-Zn-Ga solder joint with rare earth Pr addition. Materials and Design. 2013;46:816-823. DOI: 10.1016/j.matdes.2012.10.03410.1016/j.matdes.2012.10.034Search in Google Scholar

[32] Chew KH. Drop in Replacement of Tin/lead Solder Alloy in Wave Soldering Process - Lead Free Solders. Quantum Chemical Technologies (S) Pte Ltd. Singapore Asahi Chemical & Solder Ind. Pte Ltd. Search in Google Scholar

ISSN:
1898-6196
Language:
English