Open Access

Action of Some Organomercury Compounds on Photosynthesis in Spinach Chloroplasts


Cite

[1] Nieboer E, Richardson DH. The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B. 1980;1:3-26. DOI: http://dx.doi.org/10.1016/0143-148X(80)90017-8.10.1016/0143-148X(80)90017-8Search in Google Scholar

[2] Divine KK, Ayala-Fierro F, Barber DS, Carter DE. Glutathione, albumin, cysteine, and cys-gly effects on toxicity and accumulation of mercuric chloride in LLC-PK1 cells. J Toxicol Environ Health. 1999;57:489-505. DOI: 10.1080/009841099157566.10.1080/009841099157566Search in Google Scholar

[3] Tao L, Ren J. Effect of Hg on seed germination, coleoptile growth and root elongation in seven pulses. Fresen Environ Bull. 2010;19;1144-1150.Search in Google Scholar

[4] Cavusoglu K, Ergene A, Yalcin E, Tan S, Cavusoglu K, Yapar K. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L. Fresen Environ Bull. 2009;18:1654-1661.Search in Google Scholar

[5] Zengin FK, Munzuroglu O. Effects of heavy metals Pb++, Cu++, Cd++, Hg++ on total protein and abscisic acid content of bean Phaseolus vulgaris L. cv. Strike seedlings. Fresen Environ Bull. 2006;15:227-282.Search in Google Scholar

[6] Beauford W, Barber J, Barringer AR. Uptake and distribution of mercury within higher plants. Physiol Plant. 1977;39:261-265. DOI: 10.1111/j.1399-3054.1977.tb01880.x.10.1111/j.1399-3054.1977.tb01880.xSearch in Google Scholar

[7] Prasad DDK, Prasad ARK. Altered d-aminolevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra Pennisetum typhoideum. J Plant Physiol. 1987;127:241-249. DOI: http://dx.doi.org/10.1016/S0176-1617(87)80143-8.10.1016/S0176-1617(87)80143-8Search in Google Scholar

[8] Moreno-Jimenez E, Penalosa JM, Esteban E, Carpena-Ruiz RO. Mercury accumulation and resistance to mercury stress in Rumex induratus and Marrubium vulgare grown in perlite. J Plant Nutr Soil Sci. 2007;170:85-494. DOI: 10.1002/jpln.200625238.10.1002/jpln.200625238Search in Google Scholar

[9] Schlegel H, Godbold DL, Hüttermann A. Whole plant aspects of heavy metal induced changes in CO2 uptake and water relation of spruce Picea abies seedlings. Physiol Plant. 1987;69:265-270. DOI: 10.1111/j.1399-3054.1987.tb04285.x.10.1111/j.1399-3054.1987.tb04285.xSearch in Google Scholar

[10] De Filippis LF, Hamp R, Ziegler H. The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Growth and pigments. Z Pflanzenphysiol. 1981;103:37-47. DOI: http://dx.doi.org/10.1016/S0044-328X(81)80059-1.10.1016/S0044-328X(81)80059-1Search in Google Scholar

[11] Mohanty RC, Mohanty L, Mohapatra PK. Effect of glucose, glutamate, and 2-oxoglutarate on mercury toxicity in Chlorella vulgaris. Bull Environ Contamin Toxicol. 1993;51:130-137.10.1007/BF00201011Search in Google Scholar

[12] Kimimura M, Katoh S. Studies on electron transport associated with photosystem I. I. Functional site of plastocyanin: inhibitory effects of HgCl2 on electron transport and plastocyanin in chloroplasts. Biochim Biophys Acta. 1972;283:279-292. DOI: http://dx.doi.org/10.1016/0005-2728(72)90244-7.10.1016/0005-2728(72)90244-7Search in Google Scholar

[13] Rai LC, Singh AK, Mallick N. Studies of photosynthesis, the associated electron transport system of some physiological variable of Chlorella vulgaris under heavy metal stress. J Plant Physiol. 1991;137:419-424.10.1016/S0176-1617(11)80310-XSearch in Google Scholar

DOI: http://dx.doi.org/10.1016/S0176-1617(11)80310-X.10.1016/S0176-1617(11)80310-XSearch in Google Scholar

[14] De Filippis LF, Hamp R, Ziegler H. The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Adenylates and energy charge. Z Pflanzenphysiol. 1981;103:1-7. DOI: http://dx.doi.org/10.1016/S0044-328X(81)80234-6.10.1016/S0044-328X(81)80234-6Search in Google Scholar

[15] Jung YS, Yu L, Golbeck JH. Reconstitution of iron-sulfur center FB results in complete restoration of NADP+ photoreduction in Hg-treated photosystem I complexes from Synechococcus sp. PCC 6301. Photosynth Res. 1995;46:249-255.10.1007/BF00020437Search in Google Scholar

[16] Šeršeň F, Kráľová K, Bumbálová A. Action of mercury on the photosynthetic apparatus of spinach chloroplasts. Photosynthetica. 1998;35:551-559. DOI: 10.1023/A:1006931024202.10.1023/A:1006931024202Search in Google Scholar

[17] Šeršeň F, Kráľová K. New facts about CdCl2 action on pohotosynthetic apparatus of spinach chloroplasts and its comparison with HgCl2 action. Photosynthetica. 2001;39:575-580. DOI: 10.1023/A:1015612330650.10.1023/A:1015612330650Search in Google Scholar

[18] Murthy SDS, Mohanty N, Mohanty P. Prolonged incubation with low concentration of mercury alters energy transfer and chlorophyll Chl a protein complexes in Synechococcus 6301: changes in Chl a absorption and emission characteristics and loss of the F695 band. BioMetals. 1995;8;237-242.10.1007/BF00143382Search in Google Scholar

[19] Prokowski Z. Effects of HgCl2 on long-lived delayed luminiscence in Scenedesmus quadricauda. Photosynthetica. 1993;28:563-566.Search in Google Scholar

[20] Siegenthaler PA, Packer L. Light-dependent volume changes and reactions in chloroplasts I. Action of alkenylsuccinic acids and phenylmercuric acetate and possible relation to mechanisms of stomatal control. Plant Physiol. 1965;40:785-791. DOI: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC550381/.10.1104/pp.40.5.785Search in Google Scholar

[21] Honeycutt RC, Krogmann DW. Inhibition of chloroplast reactions with phenylmercuric acetate. Plant Physiol. 1972;49:376-380. DOI: http://dx.doi.org/10.1104/pp.49.3.376.10.1104/pp.49.3.376Search in Google Scholar

[22] Godbold DL, Hüttermann A. Inhibition of photosynthesis and transpiration in relation to mercury-induced root damage in spruce seedlings. Physiol Plant. 1998;74:270-275. DOI: 10.1111/j.1399-3054.1988.tb00631.x.10.1111/j.1399-3054.1988.tb00631.xSearch in Google Scholar

[23] Singh CB, Singh SP. Effect of mercury on photosynthesis in Nostoc calcicola: Role of ATP and interacting heavy metal ions. J Plant Physiol. 1987;129:41-48. DOI: http://dx.doi.org/10.1016/S0176-1617(87)80101-3.10.1016/S0176-1617(87)80101-3Search in Google Scholar

[24] Gates LF. Further experiments on black-leg disease of sugar-beet seedlings. Ann Appl Biol. 1959;47:502-510. DOI: 10.1111/j.1744-7348.1959.tb07282.x.10.1111/j.1744-7348.1959.tb07282.xSearch in Google Scholar

[25] Matorin DN, Osipov VA., Seifullina NK, Venediktov PS, Rubin AB. Increased toxic effect of methylmercury on Chlorella vulgaris under high light and cold stress conditions. Microbiology. 2009;78:321-327. DOI: 10.1134/S0026261709030102.10.1134/S0026261709030102Search in Google Scholar

[26] Kukarskikh GP, Graevskaya EE, Krendeleva TE, Timofeev KN, Rubin AB. Effect of methylmercury on the primary photosynthetic activity of green microalgae Chlamydomonas reinhardtii. Biofizika. 2003;48:853-859.Search in Google Scholar

[27] Antal TK, Graevskaya EE, Matorin DN, Voronova EN, Pogosyan SY, Krendeleva TE, Rubin AB. Study of chloride mercury and methylmercury effects on the photosynthetic activity of diatom Thalassiosira weissflogii by fluorescence methods. Biofizika. 2004;49:72-78.Search in Google Scholar

[28] Graevskaya EE, Antal TK, Matorin DN, Voronova EN, Pogosyan SI, Rubin AB. Evaluation of diatomea algae Thalassiosira weissflogii sensitivity to chloride mercury and methylmercury by chlorophyll fluorescence analysis. J Phys IV. 2003;107;569-572. DOI: 10.1051/jp4:20030367.10.1051/jp4:20030367Search in Google Scholar

[29] Röderer G. Differential toxic effects of mercuric chloride and methylmercuric chloride on the freshwater alga Poterioochromonas malhamensis. Aquatic Toxicol. 1983;3:23-24.10.1016/0166-445X(83)90004-8Search in Google Scholar

[30] Walker DA. Preparation of higher plant chloroplasts. Methods Enzymol. 1980;69C:94-104.10.1016/S0076-6879(80)69011-9Search in Google Scholar

[31] Šeršeň F, Balgavý P, Devínsky F. Electron spin resonance study of chloroplast photosynthetic activity in the presence of amphiphilic amines. Gen Physiol Biophys. 1990;9:625-633. DOI: http://www.gpb.sav.sk/1990/1990_06_625.pdf.Search in Google Scholar

[32] Wellburn AR. The spectral determination of chlorophyll a and b as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144:307-313. DOI: http://dx.doi.org/10.1016/S0176-1617(11)81192-2.10.1016/S0176-1617(11)81192-2Search in Google Scholar

[33] Xiao R, Ghosh S, Tanaka AR, Greenberg BM, Dumbroff EB. A rapid spectrophotometric method for measuring photosystem I and photosystem II activities in a single sample. Plant Physiol Biochem. 1997;35:411-417.Search in Google Scholar

[34] Hoff AJ. Application of ESR in photosynthesis. Phys Rep. 1979;54:75-200. DOI: 10.1016/0370-1573(79)90016-4.10.1016/0370-1573(79)90016-4Search in Google Scholar

[35] Babcock GT, Sauer K. Electron paramagnetic resonance signal II in spinach chloroplasts. Biochim Biophys Acta. 1973;325:483-503. DOI: http://dx.doi.org/10.1016/0005-2728(73)90209-0. 10.1016/0005-2728(73)90209-0Search in Google Scholar

[36] Debus RJ, Barry DA, Babcock GT, McIntosh L. Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA. 1988;85:427-430. DOI: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC279562/.10.1073/pnas.85.2.427Search in Google Scholar

[37] Blankenship RE, Babcock GT, Warden JT, Sauer K. Observation of a new EPR transient in chloroplasts that may reflect electron-donor to photosystem 2 at room-temperature. FEBS Lett. 1975;51:287-293.10.1016/0014-5793(75)80909-4Search in Google Scholar

[38] Debus RJ, Barry DA, Sithole I, Babcock GT, McIntosh L. Directed mutagenesis indicates that donor to P680+ in photosystem II is tyrosine-161 of the polypeptide. Biochemistry. 1988;27:9071-9074. DOI: 10.1021/bi00426a001.10.1021/bi00426a001Search in Google Scholar

[39] Izawa S. Acceptors and donors for chloroplast electron transport. Methods Enzymol. 1980;69C:413-434.10.1016/S0076-6879(80)69041-7Search in Google Scholar

[40] Warden JT, Bolton JR. Flash photolysis-electron spin resonance studies of the dynamics of photosystem I in green-plant photosynthesis-I. Effects of acceptors and donors in subchlorolplast particles. Photochem Photobiol. 1974;20:251-262. DOI: 10.1111/j.1751-1097.1974.tb06575.x.10.1111/j.1751-1097.1974.tb06575.xSearch in Google Scholar

[41] Hook JM, Dean PAW, Hockless DCR. Trifluoromethanesulfonate, a standard for solid-state 199 Hg NMR. Acta Cryst C. 1995;51:1547-1549. DOI: 10.1107/S010827019500196X.10.1107/S010827019500196XSearch in Google Scholar

[42] Jackson TA. Mercury in aquatic ecosystems. In: Metal Metabolism in Aquatic Environments. Langston WJ, Bebianno MJ, editors. London: Chapman & Hall; 1998.10.1007/978-1-4757-2761-6_5Search in Google Scholar

[43] Starý J, Kratzer K. Radiometric determination of stability constants of mercury species complexes with L-cysteine. J Radioanal Nucl Chem. 1989;126:69-75. DOI: 10.1007/BF02164804.10.1007/BF02164804Search in Google Scholar

[44] Gilmour CC, Henry EA, Mitchell R. Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol. 1992;26:2281-2287. DOI: 10.1021/es00035a029. 10.1021/es00035a029Search in Google Scholar

ISSN:
1898-6196
Language:
English