Open Access

The Use of Water Plants in Biomonitoring And Phytoremediation of Waters Polluted with Heavy Metals


Cite

[1] Szmeja J. Przewodnik do badań roślinności wodnej. Gdańsk: Wyd Uniwersytetu Gdańskiego; 2006.Search in Google Scholar

[2] Gessner F. Hydrobotanik. Berlin: Bd. VEB Deutsche Verlg. Wissenschaften; 1959.Search in Google Scholar

[3] Rabajczyk A, Jóźwiak MA. The possibilities of using macrophytes as bioindicators of heavy metals occurring in sediments. Monit Środow Przyrod. 2008;9:19-26Search in Google Scholar

[4] Wołek J. Występowanie i rozmieszczenie roślin wodnych i szuwarowych na obszarze zespołu zbiorników wodnych Czorsztyn - Niedzica i Sromowe Wyżne przez spiętrzeniem wody. Fragm Flor Geobot., Series Polonica. 1996;3:189-203.Search in Google Scholar

[5] Gabler D, Szoszkiewicz K. Ecological status assessment of rivers using macrophytes on selected examples. Scientific Review. Eng and Environ Sci. 2011;52:75-83.Search in Google Scholar

[6] Stańczykowska A. Ekologia naszych wód. Warszawa: Wyd Szkolne i Pedagogiczne; 1997.Search in Google Scholar

[7] Strzelec M, Spyra A, Serafiński W. Biologia wód śródlądowych: skrypt dla studentów I i II stopnia na kierunkach biologia i ochrona środowiska. Katowice: Wyd. Uniwersytetu Śląskiego; 2010.Search in Google Scholar

[8] Polanowska M. Rośliny wodne. Warszawa: Wyd Szkolne i Pedagogiczne; 1992.Search in Google Scholar

[9] Kłosowski G, Kłosowski S. Rośliny wodne i bagienne. Warszawa: MULTICO; 2001.Search in Google Scholar

[10] Staniszewski R, Szoszkiewicz J. Rośliny stanowisk wilgotnych i wodnych. Poznań: Wyd. Uniwersytetu Przyrodniczego w Poznaniu; 2009.Search in Google Scholar

[11] Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Wyd Nauk PWN; 2001.Search in Google Scholar

[12] Szoszkiewicz K, Jusik S, Zgoła T. Klucz do oznaczania makrofitów dla potrzeb oceny stanu ekologicznego wód powierzchniowych w Polsce. Warszawa: Biblioteka Monitoringu Środowiska; 2008.Search in Google Scholar

[13] Guilizzoni P. The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquatic Botany. 1991;41(1-3):87-109. DOI: 10.1016/0304-3770(91)90040-C.10.1016/0304-3770(91)90040-CSearch in Google Scholar

[14] Schneider IAH, Rubio J, Smith RW. Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Internat J Mineral Process. 2001;62(1-4):111-120. PII: S0301-7516(00)00047-8.10.1016/S0301-7516(00)00047-8Search in Google Scholar

[15] André I, Schneider H, Rubio J. Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ Sci Technol. 1999;33:2213-2217.10.1021/es981090zSearch in Google Scholar

[16] Wang G, Fuerstenau MC, Smith RW. Sorption of heavy metals onto nonliving water hyacinth roots. Mineral Processing and Extractive Metallurgy Review: An Internat J. 1998;19(1):309-322. DOI: 10.1080/08827509608962448.10.1080/08827509608962448Search in Google Scholar

[17] Schneider IAH, Smith RW, Rubio J. Effect of mining chemicals on biosorption of Cu(II) by the non-living biomass of the macrophyte Potamogeton lucens. Miner Eng. 1999;12(3):255-260. DOI: 10.1016/S0892-6875(99)00003-5.10.1016/S0892-6875(99)00003-5Search in Google Scholar

[18] Lacher C, Smith RW. Sorption of Hg(II) by Potamogeton natans dead biomass. Miner Engineer. 2002;15:187-191. PII: S08 92-6 875(01)00212- 6.10.1016/S0892-6875(01)00212-6Search in Google Scholar

[19] Miretzky P, Saralegui A, Cirelli AF. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere. 2006;62:247-254. DOI: 10.1016/j.chemosphere.2005.05.010.10.1016/j.chemosphere.2005.05.010Search in Google Scholar

[20] Elifantz H, Tel-Or E. Heavy metal biosorption by plant biomass of the macrophyte Ludwigia Stolonifera. Water, Air, and Soil Pollut. 2002;141(1-4):207-218. DOI: 10.1023/A:1021343804220.10.1023/A:1021343804220Search in Google Scholar

[21] Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy. 1997;44(3):301-316. DOI: 10.1016/S0304-386X(96)00059-X.10.1016/S0304-386X(96)00059-XSearch in Google Scholar

[22] Chojnacka K. Biosorption and bioaccumulation - the prospect for practical appications. Environ Internation. 2010;36:299-307. DOI:10.1016/j.envint.2009.12.001.10.1016/j.envint.2009.12.00120051290Search in Google Scholar

[23] Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum) Process Biochem. 2003;39:179-183. DOI: 10.1016/S0032-9592(03)00045-1.10.1016/S0032-9592(03)00045-1Search in Google Scholar

[24] Das N, Vimala R, Karthika P. Biosorption of heavy metals - An overview. Indian J Biotechnol. 2008;7:159-169.Search in Google Scholar

[25] Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M. Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Eng Life Sci. 2007;7(2):192-196. DOI: 10.1002/elsc.200620177.10.1002/elsc.200620177Search in Google Scholar

[26] Keskinkan O, Goksu MZL, Basibuyuk M, Forster CF. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol. 2004;92:197-200. DOI: 10.1016/j.biortech.2003.07.011.10.1016/j.biortech.2003.07.011Search in Google Scholar

[27] Ngayila N, Basly J-P, Lejeune A-H, Botineau M, Baudu M. Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. Sci Total Environ. 2007;373:564-571. DOI: 10.1016/j.scitotenv.2006.11.038.10.1016/j.scitotenv.2006.11.038Search in Google Scholar

[28] Rai UN, Sinha S, Tripathi RD, Chandra P. Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecol Eng. 1995;5:5-12. SSDI:0925-8574(95)00011-9.10.1016/0925-8574(95)00011-7Search in Google Scholar

[29] Li G, Xue P, Yan C, Li Q. Copper biosorption by Myriophyllum spicatum: Effects of temperature and pH. Korean J Chem Eng. 2010;27(4):1239-1245. DOI: 10.1007/s11814-010-0183-x.10.1007/s11814-010-0183-xSearch in Google Scholar

[30] Yan C, Wang S, Zeng A, Jin X, Xu Q, Zhao J. Equilibrium and kinetics of copper(II) biosorption by Myriophyllum spicatum L. J Environ Sci. 2005;17(6):1025-1029.Search in Google Scholar

[31] Kähkönen MA, Manninen PKG. The uptake of nickel and chromium from water by Elodea canadensis at different nickel and chromium exposure levels. Chemosphere. 1998;36(6):1381-1390.10.1016/S0045-6535(97)10022-4Search in Google Scholar

[32] Sivaci RD, Sivaci A, Sőkmen M. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere. 2004;56:1043-1048. DOI: 10.1016/j.chemosphere.2004.05.032.10.1016/j.chemosphere.2004.05.03215276717Search in Google Scholar

[33] Mechora Š, Cuderman P, Stibilj V, Germ M. Distribution of Se and its species in Myriophyllum spicatum and Ceratophyllum demersum growing in water containing Se(VI). Chemosphere. 2011;84:1636-1641. DOI: 10.1016/j.chemosphere.2011.05.024.10.1016/j.chemosphere.2011.05.02421703659Search in Google Scholar

[34] Khang HV, Hatayama M, Inoue C. Arsenic accumulation by aquatic macrophyte coontail (Ceratophyllum demersum L.) exposed to arsenite, and the effect of iron on the uptake of arsenite and arsenate. Environ and Experim Botany. 2012;83:47-52. DOI: 10.1016/j.envexpbot.2012.04.008.10.1016/j.envexpbot.2012.04.008Search in Google Scholar

[35] Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 2006;65:1027-1039. DOI: 10.1016/j.chemosphere.2006.03.033.10.1016/j.chemosphere.2006.03.03316682069Search in Google Scholar

[36] Peng K, Luo C, Lou L, Li X, Shen Z. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ. 2008;392(11): 22-29. DOI: 10.1016/j.scitotenv.2007.11.032.10.1016/j.scitotenv.2007.11.03218178241Search in Google Scholar

[37] Begum A, HariKrishna S. Bioaccumulation of trace metals by aquatic plants. Internat J of Chem Tech Research. 2010;2(1):250-254.Search in Google Scholar

[38] Sekomo CB, Rousseau DPL, Saleh SA, Lens PNL. Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng. 2012;44:102-110. DOI: 10.1016/j.ecoleng.2012.03.003. 10.1016/j.ecoleng.2012.03.003Search in Google Scholar

[39] Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, et al. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng. 2007;30:320-325. DOI: 10.1016/j.ecoleng.2007.04.007.10.1016/j.ecoleng.2007.04.007Search in Google Scholar

[40] Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environ Contamin and Toxicol. 1996;57(5):779-786.10.1007/s0012899002578791554Search in Google Scholar

[41] Rajfur M, Kłos A, Wacławek M. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water. Bioelectrochemistry. 2010;80:81-86. DOI: 10.1016/j.bioelechem.2010.03.005.10.1016/j.bioelechem.2010.03.00520435526Search in Google Scholar

[42] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.10.1016/j.bioelechem.2011.12.00722245248Search in Google Scholar

[43] Maleva MG, Nekrasova GF, Bezel VS. The response of hydrophytes to environmental pollution with heavy metals. Russ J of Ecol. 2004;35(4):230-235. DOI: 10.1023/B:RUSE.0000033791.94837.Search in Google Scholar

[44] Pajevic S, Vuckovic M, Stankovic Z, Krstic B, Kevresan Z, Radulovic S. The content of some macronutrients and heavy metals in aquatic macrophytes of three ecosystems connected to the Danube in Yugoslavia. Arch Hydrobiol Suppl. 2002;141(1-2):73-83.10.1127/lr/13/2002/73Search in Google Scholar

[45] Stanković Ž, Pajević S, Vučković M, Stojanović S. Concentrations of trace metals in dominant aquatic plants of the Lake Provala (Vojvodina, Yugoslavia). Biologia Plantarum. 2000;43(4):583-585. DOI: 10.1023/A:1002806822988.10.1023/A:1002806822988Search in Google Scholar

[46] Mazej Z, Germ M. Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere. 2009;74:642-647. DOI: 10.1016/j.chemosphere.2008.10.019.10.1016/j.chemosphere.2008.10.01919038415Search in Google Scholar

[47] Kabziński AKM. Metale ciężkie. Cz. II. Emisja i wpływ metali na środowisko. Bioskop. 2007;3:5-10.Search in Google Scholar

[48] González-Acevedo ZI, Olguín MT, Rodríguez-Martínez CE, Frías-Palos H. Sorption and desorption processes of selenium(VI) using non-living biomasses of aquatic weeds in horizontal flow. Water, Air, & Soil Pollut. 2012;223(7):4119-4128. DOI: 10.1007/s11270-012-1178-5.10.1007/s11270-012-1178-5Search in Google Scholar

[49] Fritioff Å, Kautsky L, Greger M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut. 2005;133:265-274. DOI: 10.1016/j.envpol.2004.05.036.10.1016/j.envpol.2004.05.036Search in Google Scholar

[50] Kabata-Pendias A, Pendias H. Geochemia pierwiastków śladowych. Warszawa: Wyd Nauk PWN; 1999.Search in Google Scholar

[51] Formicki G. Metale ciężkie w środowisku wodnym: właściwości toksyczne, biologiczne, dostępność i kumulacja w tkankach zwierząt. Kraków: Wyd Nauk Uniwersytetu Pedagogicznego w Krakowie; 2010.Search in Google Scholar

[52] Nyquist J, Greger M. Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ and Exper Botany. 2007;60:219-226. DOI: 10.1016/j.envexpbot.2006.10.009.10.1016/j.envexpbot.2006.10.009Search in Google Scholar

[53] Temel M. The effects of various concentrations of lead to chlorophyll a and chlorophyll b of Elodea canadensis Michx. BAÜ Fen Bil Enst Dergisi. 2005;7(2):12-18.Search in Google Scholar

[54] Malec P, Maleva M, Prasad MNV, Strzałka K. Copper toxicity in leaves of Elodea canadensis Michx. Bull Environ Contam Toxicol. 2009;82:627-632. DOI: 10.1007/s00128-009-9650-7.10.1007/s00128-009-9650-7Search in Google Scholar

[55] Kähkönen MA, Kairesalo T. The effects of nickel on the nutrient fluxes and on the growth of Elodea canadensis. Chemosphere. 1998;37(8): 1521-1530. PII: 800456535(98)00147-7.10.1016/S0045-6535(98)00147-7Search in Google Scholar

[56] Vecchia FD, La Rocca N, Moro I, De Faveri S, Rascio CAN. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci. 2005;168:329-338. DOI: 10.1016/j.plantsci.2004.07.025.10.1016/j.plantsci.2004.07.025Search in Google Scholar

[57] Mal TK, Adorjan P, Corbett AL. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environ Pollut. 2002;120:307-311. PII: S0269-7491(02)00146-X.10.1016/S0269-7491(02)00146-XSearch in Google Scholar

[58] Sergio E, Cobianchi RS, Sorbo S, Conte B, Basile A. Ultrastructural alterations and HSP 70 induction in Elodea canadensis Michx. exposed to heavy metals. Caryologia. 2007;60(1-2):115-120.10.1080/00087114.2007.10589557Search in Google Scholar

[59] Harguinteguy CA, Schreiber R, Pignata ML. Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indicat. 2013;27:8-16. DOI: 10.1016/j.ecolind.2012.11.018.10.1016/j.ecolind.2012.11.018Search in Google Scholar

[60] Kłos A, Rajfur M, Wacławek M, Wacławek W, Wünschmann S, Markert B. Quantitative relations between different concentrations of micro- and macroelements in mosses and lichens: the region of Opole (Poland) as an environmental interface in between Eastern and Western Europe. Int J Environ Health. 2010;4(2/3):98-119. DOI:10.1504/IJENVH.2010.033702.10.1504/IJENVH.2010.033702Search in Google Scholar

[61] Kłos A, Rajfur M, Šrámek I, Wacławek M. Use of lichen and moss in assessment of forest contamination with heavy metals in Praded and Glacensis Euroregions (Poland and Czech Republic). Water Air & Soil Pollut. 2011;222:367-376. DOI:10.1007/s11270-011-0830-9. 10.1007/s11270-011-0830-9Search in Google Scholar

[62] Rajfur M, Kłos A, Waclawek M. Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals. J Environ Sci and Health Part A. 2010;46: 1401-1408. DOI:10.1080/10934529.2011.606717.10.1080/10934529.2011.606717Search in Google Scholar

[63] Komulainent SF, Morozov AK. Heavy metal dynamics in the periphyton in small rivers of Kola Peninsula. Water Res. 2010;37(6):874-878. DOI: 10.1134/S0097807810060138.10.1134/S0097807810060138Search in Google Scholar

[64] Birungi Z, Masola B, Zaranyika MF, Naigaga I, Marshal B. Active biomonitoring of trace heavy metals fish using (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Phys and Chem of the Earth. 2007;32(15-18):1350-1358. DOI: 10.1016/j.pce.2007.07.034.10.1016/j.pce.2007.07.034Search in Google Scholar

[65] Tudor MI, Tudor M, David C, Teodorof L, Tudor D. Heavy metals concentrations in aquatic environment and living organisms in the Danube delta, Romania. Chemicals as Intent and Accid Global Environ Threats. 2006:435-442.10.1007/978-1-4020-5098-5_40Search in Google Scholar

[66] Fawzy MA, El-sayed Badr N, El-Khatib A, Abo-El-Kassem A. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess. 2012;184:1753-1771. DOI: 10.1007/s10661-011-2076-9.10.1007/s10661-011-2076-9Search in Google Scholar

[67] Zimny H. Ekologiczna ocena stanu środowiska. Bioindykacja i biomonitoring. Warszawa: Agencja Reklamowo-Wydawnicza A. Grzegorczyk; 2006.Search in Google Scholar

[68] Zhou G, Zhang J, Fu J, Shi J, Jiang G. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta. 2008;606(2);135-150. DOI:10.1016/j.aca.2007.11.018.10.1016/j.aca.2007.11.018Search in Google Scholar

[69] Wardencki W. Bioanalityka w ocenie zanieczyszczenia środowiska. Gdańsk: CEEAM; 2004.Search in Google Scholar

[70] Jamnická G, Hrivnák R, Oťaheľová H, Skoršepa M, Valachovič M. Heavy metals content in aquatic plant species from some aquatic biotopes in Slovakia. Proc 36th Internat Conf of IAD. Wien: Austrian Committee Danube Research/IAD. 2006:336-370.Search in Google Scholar

[71] Kähkönen MA, Pantsar-Kallio M, Manninen PKG. Analysing heavy metal concentrations in the different parts of Elodea canadensis and surface sediment with PCA in two boreal lakes in Southern Finland. Chemosphere. 1997;35(11):2645-2656. PII:S0045-6535(97)00337-8.10.1016/S0045-6535(97)00337-8Search in Google Scholar

[72] Munteanu V, Munteanu G. Biomonitoring of mercury pollution: A case study from the Dniester River. Ecolog Indicat. 2007;7:489-496. DOI:10.1016/j.ecolind.2006.01.002.10.1016/j.ecolind.2006.01.002Search in Google Scholar

[73] Thiébaut G, Gross Y, Gierlinski P, Boiché A. Accumulation of metals in Elodea canadensis and Elodea nuttallii: Implications for plant-macroinvertebrate interactions. Sci Total Environ. 2012;408(22):5499-5505. DOI: 10.1016/j.scitotenv.2010.07.026.10.1016/j.scitotenv.2010.07.02620800873Search in Google Scholar

[74] Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B. Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Experim Botany. 2006;58:206-215. DOI: 10.1016/j.envexpbot.2005.08.004.10.1016/j.envexpbot.2005.08.004Search in Google Scholar

[75] Samecka-Cymerman A, Kempers AJ. Biomonitoring of water pollution with Elodea canadensis. A case study of three small Polish rivers with different levels of pollution. Water, Air, & Soil Pollut. 2003;145(1-4):139-153.10.1023/A:1023632229312Search in Google Scholar

[76] Samecka-Cymerman A, Kempers AJ. Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotoxicol and Environ Safety. 1996; 35(3):242-247.10.1006/eesa.1996.01069007000Search in Google Scholar

[77] Samecka-Cymerman A, Kempers AJ. Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Arch Environ Contam Toxicol. 2007;53:198-206. DOI: 10.1007/s00244-006-0059-6.10.1007/s00244-006-0059-617549539Search in Google Scholar

[78] Žáková Z, Kočková E. Biomonitoring and assessment of heavy metal contamination of streams and reservoirs in the Dyje/Thaya river basin, Czech Republic. Water Sci Technol. 1999;39(12):225-232.10.2166/wst.1999.0550Search in Google Scholar

[79] Pajeviã SP, Vuåkoviã MS, Kevrešan ŽS, Matavulj MN, Radulović SW, Radnović DV. Aquatic macrophytes as indicators of heavy metal pollution of water in DTD canal system. Proc for Natural Sci. 2003;104:51-60. UDC: 581.526.3:581.192]:556.53(497.113).10.2298/ZMSPN0304051PSearch in Google Scholar

[80] Pajević S, Borišev M, Rončević S, Vukov D, Igić R. Heavy metal accumulation of Danube river aquatic plants - indication of chemical contamination. Cent Eur J Biol. 2008;3(3):285-294. DOI: 10.2478/s11535-008-0017-6.10.2478/s11535-008-0017-6Search in Google Scholar

[81] Muntyanu GG, Muntyanu VI. Biomonitoring of some heavy metals in the Dubossary (Dubasari) Reservoir. Hydrobiol J. 2006;42(2):87-101.10.1615/HydrobJ.v42.i2.80Search in Google Scholar

[82] Sawidis T, Chettri MK, Zachariadis GA, Stratis JA. Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicol Environ Saf. 1995;32(1):73-80.10.1006/eesa.1995.10878565880Search in Google Scholar

[83] Demirezen D, Aksoy A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere. 2004;56:685-696. DOI: 10.1016/j.chemosphere.2004.04.011. 10.1016/j.chemosphere.2004.04.01115234165Search in Google Scholar

[84] Tsao DT. Overview of phytotechnologies. Naperville Group Environ Manage J. 2003;78:7-14. DOI: 10.1007/3-540-45991-X_1.10.1007/3-540-45991-X_1Search in Google Scholar

[85] Buczkowski R, Kondzielski I, Szymański T. Metody remediacji gleb zanieczyszczonych metalami ciężkimi. Toruń: Wyd Uniwersytetu Mikołaja Kopernika; 2002.Search in Google Scholar

[86] Marecik R, Króliczak P, Cyplik P. Fitoremediacja - alternatywa dla tradycyjnych metod oczyszczania środowiska. Biotechnologia. 2006;74:88-97.Search in Google Scholar

[87] Rahman MA, Hasegawa H. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere. 2011;83(5): 633-646. DOI: 10.1016/j.chemosphere.2011.02.045.10.1016/j.chemosphere.2011.02.045Search in Google Scholar

[88] Pilon-Smits E. Phytoremedation. Ann Rev Plant Biol. 2005;56:15-39.10.1146/annurev.arplant.56.032604.144214Search in Google Scholar

[89] Parveen S, Arjun B. Bioaccumulation of chromium by aquatic macrophytes Hydrilla sp. & Chara sp. Pelagia Research Library. 2011;2(1):214-220.Search in Google Scholar

[90] Chandra P, Kulshreshtha K. Chromium accumulation and toxicity in aquatic vascular plants. Botan Rev. 2004;70(3):313-327. DOI: 10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2.Search in Google Scholar

[91] Basile A, Sorbo S, Conte B, Cobianchi RC, Trinchella F, Capasso C, Carginale V. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Internat J Phytoremediat. 2012;14(4):374-387. DOI: 10.1080/15226514.2011.620653.10.1080/15226514.2011.620653Search in Google Scholar

[92] Axtell NR, Sternberg APK, Claussen K. Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol. 2003;89(1):41-48. DOI: 10.1016/S0960-8524(03)00034-8.10.1016/S0960-8524(03)00034-8Search in Google Scholar

[93] Hou W, Chen X, Song G, Wang Q, Chang CC. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol and Biochem. 2007;45(1):62-69. DOI: 10.1016/j.plaphy.2006.12.005.10.1016/j.plaphy.2006.12.00517300947Search in Google Scholar

[94] Mishra VK, Upadhyay AR, Pathak V, Tripathi BD. Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water, Air, and Soil Pollut. 2008;192(1-4):303-314. DOI: 10.1007/s11270-008-9657-4.10.1007/s11270-008-9657-4Search in Google Scholar

[95] Dogan M, Saygideger SD, Colak U. Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull of Environ Contamin and Toxicol. 2009;83(2):249-254. DOI: 10.1007/s00128-009-9733-5.10.1007/s00128-009-9733-519434355Search in Google Scholar

[96] Mkandawire M, Taubert B, Dudel EG. Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Internat J of Phytoremediat. 2004;6(4):347-362. DOI: 10.1080/16226510490888884.10.1080/1622651049088888415696706Search in Google Scholar

[97] Mkandawire M, Dudel EG. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci of The Total Environ. 2005;336(1-3):81-89. DOI: 10.1016/j.scitotenv.2004.06.002.10.1016/j.scitotenv.2004.06.00215589251Search in Google Scholar

[98] Alvarado S, Guédez M, Lué-Merú AP, Nelson G, Alvaro A, Jesús AC, Gyula Z. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol. 2008;99(17):8436-8440. DOI: 10.1016/j.biortech.2008.02.051.10.1016/j.biortech.2008.02.05118442903Search in Google Scholar

[99] Fritioff Å, Greger M. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere. 2006;63(2):220-227. DOI: 10.1016/j.chemosphere.2005.08.018.10.1016/j.chemosphere.2005.08.01816213560Search in Google Scholar

[100] Demırezen D, Aksoy A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere. 2004; 56(7):685-696. DOI: 10.1016/j.chemosphere.2004.04.011.10.1016/j.chemosphere.2004.04.01115234165Search in Google Scholar

[101] Olguín EJ, Sánchez-Galván G. Heavy metal removal in phytofiltration and phytoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol. 2012;30(1):3-8. DOI:10.1016/j.nbt.2012.05.020.10.1016/j.nbt.2012.05.02022673055Search in Google Scholar

[102] Lezcano JM, González F, Ballester A, Blázquez ML, Muñoz JA, García-Balboa C. Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems. J Environ Manage. 2011;92: 2666-2674. DOI: 10.1016/j.jenvman.2011.06.004. 10.1016/j.jenvman.2011.06.00421723659Search in Google Scholar

ISSN:
1898-6196
Language:
English