Cite

[1] M. E. H. Benbouzid, M. Vieira, and C. Theys, “Induction Motors’ Faults Detection and Localization Using Stator Current Advanced Signal Processing Techniques,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 14–22, 1999. https://doi.org/10.1109/63.73758810.1109/63.737588Open DOISearch in Google Scholar

[2] M. Hermann, T. Pentek, and B. Otto, “Design Principles for Industrie 4.0 Scenarios,” in 2016 49th Hawaii International Conference on System Sciences (HICSS), 2016, pp. 3928–3937. https://doi.org/10.1109/hicss.2016.48810.1109/HICSS.2016.488Search in Google Scholar

[3] S. Nandi, H. A. Toliyat, and X. Li, “Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 719–729, Dec. 2005. https://doi.org/10.1109/tec.2005.84795510.1109/tec.2005.847955Open DOISearch in Google Scholar

[4] B. Asad, T. Vaimann, A. Belahcen, and A. Kallaste, “Broken Rotor Bar Fault Diagnostic of Inverter Fed Induction Motor Using FFT, Hilbert and Park’s Vector Approach,” in 2018 XIII International Conference on Electrical Machines (ICEM), 2018, pp. 2352–2358.10.1109/ICELMACH.2018.8506957Search in Google Scholar

[5] M. Karimi-Ghartemani, S. A. Khajehoddin, P. K. Jain, A. Bakhshai, and M. Mojiri, “Addressing DC Component in PLL and Notch Filter Algorithms,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 78–86, Jan. 2012. https://doi.org/10.1109/tpel.2011.215823810.1109/tpel.2011.2158238Open DOISearch in Google Scholar

[6] Z. Xin, X. Wang, Z. Qin, M. Lu, P. C. Loh, and F. Blaabjerg, “An Improved Second-Order Generalized Integrator Based Quadrature Signal Generator,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8068–8073, Dec. 2016. https://doi.org/10.1109/tpel.2016.257664410.1109/tpel.2016.2576644Open DOISearch in Google Scholar

[7] M. Malekpour, B. T. Phung, and E. Ambikairajah, “Stator Current Envelope Extraction for Analysis of Broken Rotor Bar in Induction Motors,” in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2017, pp. 240–246. https://doi.org/10.1109/demped.2017.806239310.1109/demped.2017.8062393Open DOISearch in Google Scholar

[8] B. Mirafzal and N. A. O. Demerdash, “Induction Machine Broken-Bar Fault Diagnosis Using the Rotor Magnetic Field Space-Vector Orientation,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 534–542, Mar. 2004. https://doi.org/10.1109/tia.2004.82443310.1109/TIA.2004.824433Search in Google Scholar

[9] R. Roy, A. Paulraj, and T. Kailath, “ESPRIT-A Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise,” IEEE Trans. Acoust., vol. 34, no. 5, pp. 1340–1342, Oct. 1986. https://doi.org/10.1109/tassp.1986.116493510.1109/tassp.1986.1164935Open DOISearch in Google Scholar

[10] R. Roy and T. Kailath, “ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques,” IEEE Trans. Acoust., vol. 37, no. 7, pp. 984–995, Jul. 1989. https://doi.org/10.1109/29.3227610.1109/29.32276Search in Google Scholar

[11] B. Ottersten, M. Viberg, and T. Kailath, “Performance Analysis of the Total Least Squares ESPRIT Algorithm,” IEEE Trans. Signal Process., vol. 39, no. 5, pp. 1122–1135, May 1991. https://doi.org/10.1109/78.8096710.1109/78.80967Open DOISearch in Google Scholar

[12] X.-D. Zhang and Y.-C. Liang, “Prefiltering-Based ESPRIT for Estimating Sinusoidal Parameters in Non-Gaussian ARMA Noise,” IEEE Trans. Signal Process., vol. 43, no. 1, pp. 349–353, 1995. https://doi.org/10.1109/78.36532710.1109/78.365327Open DOISearch in Google Scholar

[13] V. F. Pisarenko, “The Retrieval of Harmonics from a Covariance Function,” Geophys. J. Int., vol. 33, no. 3, pp. 347–366, Sep. 1973. https://doi.org/10.1111/j.1365-246X.1973.tb03424.x10.1111/j.1365-246X.1973.tb03424.xOpen DOISearch in Google Scholar

[14] R. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar. 1986. https://doi.org/10.1109/TAP.1986.114383010.1109/TAP.1986.1143830Open DOISearch in Google Scholar

[15] B. Xu, L. Sun, L. Xu, and G. Xu, “Improvement of the Hilbert Method via ESPRIT for Detecting Rotor Fault in Induction Motors at Low Slip,” IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 225–233, Mar. 2013. https://doi.org/10.1109/TEC.2012.223655710.1109/TEC.2012.2236557Open DOISearch in Google Scholar

[16] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, and J. Perez-Cruz, “Improved Resolution of the MCSA Method via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 52–59, Mar. 2009. https://doi.org/10.1109/TEC.2008.200320710.1109/TEC.2008.2003207Open DOISearch in Google Scholar

[17] E. Elbouchikhi, V. Choqueuse, and M. Benbouzid, “Induction Machine Bearing Faults Detection Based on a Multi-Dimensional MUSIC Algorithm and Maximum Likelihood Estimation,” ISA Trans., vol. 63, pp. 413–424, 2016. https://doi.org/10.1016/j.isatra.2016.03.00710.1016/j.isatra.2016.03.00727038887Open DOISearch in Google Scholar

[18] S. Pan, T. Han, A. C. C. Tan, and T. R. Lin, “Fault Diagnosis System of Induction Motors Based on Multiscale Entropy and Support Vector Machine with Mutual Information Algorithm,” Shock Vib., vol. 2016, no. January, 2016. https://doi.org/10.1155/2016/583671710.1155/2016/5836717Open DOISearch in Google Scholar

[19] T. A. Garcia-Calva, D. Morinigo-Sotelo, and R. De Jesus Romero-Troncoso, “Non-Uniform Time Resampling for Diagnosing Broken Rotor Bars in Inverter-Fed Induction Motors,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2306–2315, 2017. https://doi.org/10.1109/TIE.2016.261931810.1109/TIE.2016.2619318Open DOISearch in Google Scholar

[20] Y. Trachi, E. Elbouchikhi, V. Choqueuse, and M. E. H. Benbouzid, “Induction Machines Fault Detection Based on Subspace Spectral Estimation,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5641–5651, Sep. 2016. https://doi.org/10.1109/TIE.2016.257074110.1109/TIE.2016.2570741Open DOISearch in Google Scholar

[21] A. Garcia-Perez, R. de J. Romero-Troncoso, E. Cabal-Yepez, and R. A. Osornio-Rios, “The Application of High-Resolution Spectral Analysis for Identifying Multiple Combined Faults in Induction Motors,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 2002–2010, May 2011. https://doi.org/10.1109/TIE.2010.205139810.1109/TIE.2010.2051398Open DOISearch in Google Scholar

[22] A. Garcia-Perez, R. J. Romero-Troncoso, E. Cabal-Yepez, R. A. Osornio-Rios, J. de J. Rangel-Magdaleno, and H. Miranda, “Startup Current Analysis of Incipient Broken Rotor Bar in Induction Motors Using High-Resolution Spectral Analysis,” in 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives, 2011, pp. 657–663. https://doi.org/10.1109/DEMPED.2011.606369410.1109/DEMPED.2011.6063694Search in Google Scholar

[23] E. H. El Bouchikhi, V. Choqueuse, M. Benbouzid, and J. F. Charpentier, “Induction Machine Fault Detection Enhancement Using a Stator Current High Resolution Spectrum,” in 38th Annual Conference on IEEE Industrial Electronics Society (IECON 2012), 2012, pp. 3913–3918. https://doi.org/10.1109/IECON.2012.638926710.1109/IECON.2012.6389267Open DOISearch in Google Scholar

[24] B. Mirafzal and N. A. O. Demerdash, “Effects of Load Magnitude on Diagnosing Broken Bar Faults in Induction Motors Using the Pendulous Oscillation of the Rotor Magnetic Field Orientation,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 771–783, 2005. https://doi.org/10.1109/TIA.2005.84731510.1109/TIA.2005.847315Open DOISearch in Google Scholar

[25] S. H. Kia, H. Henao, and G.-A. Capolino, “Diagnosis of Broken-Bar Fault in Induction Machines Using Discrete Wavelet Transform Without Slip Estimation,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1395–1404, Jul. 2009. https://doi.org/10.1109/TIA.2009.201897510.1109/TIA.2009.2018975Open DOISearch in Google Scholar

[26] A. Elez, S. Car, S. Tvoric, and B. Vaseghi, “Rotor Cage and Winding Fault Detection Based on Machine Differential Magnetic Field Measurement (DMFM),” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 3156–3163, May 2017. https://doi.org/10.1109/TIA.2016.263680010.1109/TIA.2016.2636800Open DOISearch in Google Scholar

[27] R. A. Lizarraga-Morales, C. Rodriguez-Donate, E. Cabal-Yepez, M. Lopez-Ramirez, L. M. Ledesma-Carrillo, and E. R. Ferrucho-Alvarez, “Novel FPGA-Based Methodology for Early Broken Rotor Bar Detection and Classification Through Homogeneity Estimation, ” IEEE Trans. Instrum. Meas., vol. 66, no. 7, pp. 1760–1769, Jul. 2017. https://doi.org/10.1109/TIM.2017.266452010.1109/TIM.2017.2664520Open DOISearch in Google Scholar

[28] P. Karvelis, G. Georgoulas, I. P. Tsoumas, J. A. Antonino-Daviu, V. Climente-Alarcon, and C. D. Stylios, “A Symbolic Representation Approach for the Diagnosis of Broken Rotor Bars in Induction Motors,” IEEE Trans. Ind. Informatics, vol. 11, no. 5, pp. 1028–1037, Oct. 2015. https://doi.org/10.1109/TII.2015.246368010.1109/TII.2015.2463680Open DOISearch in Google Scholar

[29] P. Shi, Z. Chen, Y. Vagapov, and Z. Zouaoui, “A New Diagnosis of Broken Rotor Bar Fault Extent in Three Phase Squirrel Cage Induction Motor,” Mech. Syst. Signal Process., vol. 42, no. 1–2, pp. 388–403, Jan. 2014. https://doi.org/10.1016/j.ymssp.2013.09.00210.1016/j.ymssp.2013.09.002Open DOISearch in Google Scholar

[30] K. Yahia, A. J. Marques Cardoso, A. Ghoggal, and S.-E. Zouzou, “Induction Motors Broken Rotor Bars Diagnosis Through the Discrete Wavelet Transform of the Instantaneous Reactive Power Signal under Time-Varying Load Conditions,” Electr. Power Components Syst., vol. 42, no. 7, pp. 682–692, May 2014. https://doi.org/10.1080/15325008.2014.89096610.1080/15325008.2014.890966Open DOISearch in Google Scholar

[31] N. R. Devi, D. V. S. S. Siva Sarma, and P. V. Ramana Rao, “Diagnosis and Classification of Stator Winding Insulation Faults on a Three-Phase Induction Motor Using Wavelet and MNN,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 5, pp. 2543–2555, Oct. 2016. https://doi.org/10.1109/TDEI.2016.773681110.1109/TDEI.2016.7736811Open DOISearch in Google Scholar

[32] T. Hong, M. T. C. Fang, and D. Hilder, “PD Classification by a Modular Neural Network Based on Task Decomposition,” IEEE Trans. Dielectr. Electr. Insul., vol. 3, no. 2, pp. 207–212, Apr. 1996. https://doi.org/10.1109/94.48677210.1109/94.486772Open DOISearch in Google Scholar

[33] M. Kang and J.-M. Kim, “Reliable Fault Diagnosis of Multiple Induction Motor Defects Using a 2-D Representation of Shannon Wavelets,” IEEE Trans. Magn., vol. 50, no. 10, pp. 1–13, Oct. 2014. https://doi.org/10.1109/TMAG.2014.231647410.1109/TMAG.2014.2316474Search in Google Scholar

[34] J. Zarei, “Induction Motors Bearing Fault Detection Using Pattern Recognition Techniques,” Expert Syst. Appl., vol. 39, no. 1, pp. 68–73, Jan. 2012. https://doi.org/10.1016/j.eswa.2011.06.04210.1016/j.eswa.2011.06.042Open DOISearch in Google Scholar

[35] C. Rodriguez-Donate, R. Romero-Troncoso, E. Cabal-Yepez, A. Garcia-Perez, and R. Osornio-Rios, “Wavelet-Based General Methodology for Multiple Fault Detection on Induction Motors at the Startup Vibration Transient,” J. Vib. Control, vol. 17, no. 9, pp. 1299–1309, Aug. 2011. https://doi.org/10.1177/107754631037914110.1177/1077546310379141Open DOISearch in Google Scholar

[36] Y. Lei, Z. He, and Y. Zi, “Application of an Intelligent Classification Method to Mechanical Fault Diagnosis,” Expert Syst. Appl., vol. 36, no. 6, pp. 9941–9948, Aug. 2009. https://doi.org/10.1016/j.eswa.2009.01.06510.1016/j.eswa.2009.01.065Open DOISearch in Google Scholar

[37] V. T. Do and U.-P. Chong, “Signal Model-Based Fault Detection and Diagnosis for Induction Motors Using Features of Vibration Signal in Two-Dimension Domain,” Strojniški Vestn. – J. Mech. Eng., vol. 57, no. 09, pp. 655–666, Sep. 2011. https://doi.org/10.5545/sv-jme.2010.16210.5545/sv-jme.2010.162Open DOISearch in Google Scholar

[38] P. E. William and M. W. Hoffman, “Identification of Bearing Faults Using Time Domain Zero-Crossings,” Mech. Syst. Signal Process., vol. 25, no. 8, pp. 3078–3088, Nov. 2011. https://doi.org/10.1016/j.ymssp.2011.06.00110.1016/j.ymssp.2011.06.001Search in Google Scholar

[39] Kyusung Kim and A. G. Parlos, “Induction Motor Fault Diagnosis Based on Neuropredictors and Wavelet Signal Processing,” IEEE/ASME Trans. Mechatronics, vol. 7, no. 2, pp. 201–219, Jun. 2002. https://doi.org/10.1109/TMECH.2002.101125810.1109/TMECH.2002.1011258Open DOISearch in Google Scholar

[40] A. Sapena-Bano, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and D. Matic, “Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current’s FFT,” IEEE Trans. Instrum. Meas., vol. 64, no. 11, pp. 3137–3146, Nov. 2015. https://doi.org/10.1109/TIM.2015.244424010.1109/TIM.2015.2444240Open DOISearch in Google Scholar

[41] A. Sadeghian, Zhongming Ye, and Bin Wu, “Online Detection of Broken Rotor Bars in Induction Motors by Wavelet Packet Decomposition and Artificial Neural Networks,” IEEE Trans. Instrum. Meas., vol. 58, no. 7, pp. 2253–2263, Jul. 2009. https://doi.org/10.1109/TIM.2009.201374310.1109/TIM.2009.2013743Open DOISearch in Google Scholar

[42] B. Ayhan, M.-Y. Chow, and M.-H. Song, “Multiple Discriminant Analysis and Neural-Network-Based Monolith and Partition Fault-Detection Schemes for Broken Rotor Bar in Induction Motors, ” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1298–1308, Jun. 2006. https://doi.org/10.1109/TIE.2006.87830110.1109/TIE.2006.878301Search in Google Scholar

[43] V. P. Mini, S. Setty, and S. Ushakumari, “Fault Detection and Diagnosis of an Induction Motor Using Fuzzy Logic,” in 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), 2010, pp. 459–464. https://doi.org/10.1109/SIBIRCON.2010.555512310.1109/SIBIRCON.2010.5555123Search in Google Scholar

[44] J. F. Bangura, R. J. Povinelli, N. A. O. Demerdash, and R. H. Brown, “Diagnostics of Eccentricities and Bar/End-Ring Connector Breakages in Polyphase Induction Motors Through a Combination Of Time-Series Data Mining and Time-Stepping Coupled FE-State Space Techniques,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1005–1013, Jul. 2003. https://doi.org/10.1109/TIA.2003.81458210.1109/TIA.2003.814582Open DOISearch in Google Scholar

[45] S. Abdellatif, S. Tahar, and Z. Boubakeur, “Diagnostic of the simultaneous of Dynamic Eccentricity and Broken Rotor Bars Using the Magnetic Field Spectrum of the Air-Gap for an Induction Machine,” in 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT), 2015, pp. 1–6. https://doi.org/10.1109/CEIT.2015.723315810.1109/CEIT.2015.7233158Open DOISearch in Google Scholar

[46] J. Subramanian, S. Nandi, and T. Ilamparithi, “Detection and Severity Estimation of Static and Dynamic Eccentricity in Induction Motors Using Finite Element Analysis,” in 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2015, pp. 366–372. https://doi.org/10.1109/DEMPED.2015.730371610.1109/DEMPED.2015.7303716Search in Google Scholar

[47] A. Bentounsi and A. Nicolas, “On Line Diagnosis of Defaults on Squirrel Cage Motors Using FEM,” IEEE Trans. Magn., vol. 34, no. 5, pp. 3511–3514, 1998. https://doi.org/10.1109/20.71782810.1109/20.717828Open DOISearch in Google Scholar

[48] T. Vaimann, A. Belahcen, and A. Kallaste, “Necessity for Implementation of Inverse Problem Theory in Electric Machine Fault Diagnosis,” in 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2015, pp. 380–385. https://doi.org/10.1109/DEMPED.2015.730371810.1109/DEMPED.2015.7303718Search in Google Scholar

[49] J. F. Watson and D. G. Dorrell, “The Use of Finite Element Methods to Improve Techniques for the Early Detection of Faults in 3-Phase Induction Motors,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 655–660, 1999. https://doi.org/10.1109/60.79093110.1109/60.790931Open DOISearch in Google Scholar

[50] L. Weili, X. Ying, S. Jiafeng, and L. Yingli, “Finite-Element Analysis of Field Distribution and Characteristic Performance of Squirrel-Cage Induction Motor With Broken Bars,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1537–1540, Apr. 2007. https://doi.org/10.1109/TMAG.2006.89208610.1109/TMAG.2006.892086Open DOISearch in Google Scholar

[51] O. A. Mohammed, N. Y. Abed, and S. Ganu, “Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3434–3436, Oct. 2006. https://doi.org/10.1109/TMAG.2006.87909110.1109/TMAG.2006.879091Search in Google Scholar

[52] T. Vaimann, J. Sobra, A. Belahcen, A. Rassõlkin, M. Rolak, and A. Kallaste, “Induction Machine Fault Detection Using Smartphone Recorded Audible Noise,” IET Sci. Meas. Technol., 2018.10.1049/iet-smt.2017.0104Search in Google Scholar

[53] M. Seera, Chee Peng Lim, D. Ishak, and H. Singh, “Fault Detection and Diagnosis of Induction Motors Using Motor Current Signature Analysis and a Hybrid FMM–CART Model,” IEEE Trans. Neural Networks Learn. Syst., vol. 23, no. 1, pp. 97–108, Jan. 2012. https://doi.org/10.1109/TNNLS.2011.217844310.1109/TNNLS.2011.217844324808459Open DOISearch in Google Scholar

[54] M. Mneimneh and R. Povinelli, “An Electrophysiological Cardiac Model With Applications to Ischemia Detection and Infarction Localization,” in 2009 36th Annual Computers in Cardiology Conference (CinC), 2009.Search in Google Scholar

[55] J. Wang, Z. Zhao, Z. Nie, and Q.-H. Liu, “Electromagnetic Inverse Scattering Series Method for Positioning Three-Dimensional Targets in Near-Surface Two-Layer Medium With Unknown Dielectric Properties,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 299–303, Feb. 2015. https://doi.org/10.1109/LGRS.2014.233698310.1109/LGRS.2014.2336983Open DOISearch in Google Scholar

[56] C. Gilavert, S. Moussaoui, and J. Idier, “Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems Using MCMC,” IEEE Trans. Signal Process., vol. 63, no. 1, pp. 70–80, Jan. 2015. https://doi.org/10.1109/TSP.2014.236745710.1109/TSP.2014.2367457Open DOISearch in Google Scholar

[57] A. Mohamed Abouelyazied Abdallh, “An Inverse Problem Based Methodology With Uncertainty Analysis for the Identification of Magnetic Material Characteristics of Electromagnetic Devices,” Dissertation, Ghent University, Department of Electrical energy, systems and automation, Ghent; Leuven, Belgium, 2012.Search in Google Scholar

[58] G. Crevecoeur, “Numerical Methods for Low Frequency Electromagnetic Optimization and Inverse Problems Using Multi-Level Techniques,” Ph. D. Dissertation, Ghent University, Ghent, Belgium, 2009.Search in Google Scholar

[59] A. Abou-Elyazied Abdallh, P. Sergeant, and L. Dupre, “A Non-Destructive Methodology for Estimating the Magnetic Material Properties of an Asynchronous Motor,” IEEE Trans. Magn., vol. 48, no. 4, pp. 1621–1624, Apr. 2012. https://doi.org/10.1109/TMAG.2011.217317110.1109/TMAG.2011.2173171Open DOISearch in Google Scholar

[60] A. A.-E. Abdallh, P. Sergeant, G. Crevecoeur, and L. Dupre, “An Inverse Approach for Magnetic Material Characterization of an EI Core Electromagnetic Inductor,” IEEE Trans. Magn., vol. 46, no. 2, pp. 622–625, Feb. 2010. https://doi.org/10.1109/TMAG.2009.203335310.1109/TMAG.2009.2033353Open DOISearch in Google Scholar

[61] A. A.-E. Abdallh, G. Crevecoeur, and L. Dupre, “Selection of Measurement Modality for Magnetic Material Characterization of an Electromagnetic Device Using Stochastic Uncertainty Analysis,” IEEE Trans. Magn., vol. 47, no. 11, pp. 4564–4573, Nov. 2011. https://doi.org/10.1109/TMAG.2011.215187010.1109/TMAG.2011.2151870Open DOISearch in Google Scholar

[62] V. P. Bui, O. Chadebec, L.-L. Rouve, and J.-L. Coulomb, “Noninvasive Fault Monitoring of Electrical Machines by Solving the Steady-State Magnetic Inverse Problem,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1050–1053, Jun. 2008. https://doi.org/10.1109/TMAG.2007.91659310.1109/TMAG.2007.916593Open DOISearch in Google Scholar

[63] P. Rasilo, A. A.-E. Abdallh, A. Belahcen, A. Arkkio, and L. Dupre, “Identification of Synchronous Machine Magnetization Characteristics From Calorimetric Core-Loss and No-Load Curve Measurements,” IEEE Trans. Magn., vol. 51, no. 3, pp. 1–4, Mar. 2015. https://doi.org/10.1109/TMAG.2014.235405510.1109/TMAG.2014.2354055Open DOISearch in Google Scholar

[64] A. Kechroud, J. J. H. Paulides, and E. A. Lomonova, “B-Spline Neural Network Approach to Inverse Problems in Switched Reluctance Motor Optimal Design,” IEEE Trans. Magn., vol. 47, no. 10, pp. 4179–4182, Oct. 2011. https://doi.org/10.1109/TMAG.2011.215118310.1109/TMAG.2011.2151183Search in Google Scholar

[65] J. Fouladgar and E. Chauveau, “The Influence of the Harmonics on the Temperature of Electrical Machines,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1644–1647, May 2005. https://doi.org/10.1109/TMAG.2005.84611310.1109/TMAG.2005.846113Open DOISearch in Google Scholar

[66] M. Saif and W. Chen, “Observer-Based Strategies for Actuator Fault Detection, Isolation and Estimation for Certain Class of Uncertain Nonlinear Systems,” IET Control Theory Appl., vol. 1, no. 6, pp. 1672–1680, Nov. 2007. https://doi.org/10.1049/iet-cta:2006040810.1049/iet-cta:20060408Open DOISearch in Google Scholar

[67] Q. Shen, B. Jiang, and V. Cocquempot, “Fault-Tolerant Control for T–S Fuzzy Systems With Application to Near-Space Hypersonic Vehicle With Actuator Faults,” IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 652–665, Aug. 2012. https://doi.org/10.1109/TFUZZ.2011.218118110.1109/TFUZZ.2011.2181181Open DOISearch in Google Scholar

[68] L. M. Capisani, A. Ferrara, A. Ferreira de Loza, and L. M. Fridman, “Manipulator Fault Diagnosis via Higher Order Sliding-Mode Observers,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3979–3986, Oct. 2012. https://doi.org/10.1109/TIE.2012.218953410.1109/TIE.2012.2189534Search in Google Scholar

[69] M. N. Nguyen, C. Bao, K. L. Tew, S. D. Teddy, and X.-L. Li, “Ensemble Based Real-Time Adaptive Classification System for Intelligent Sensing Machine Diagnostics,” IEEE Trans. Reliab., vol. 61, no. 2, pp. 303–313, Jun. 2012. https://doi.org/10.1109/TR.2012.219435210.1109/TR.2012.2194352Open DOISearch in Google Scholar

[70] D. He, R. Li, and J. Zhu, “Plastic Bearing Fault Diagnosis Based on a Two-Step Data Mining Approach,” IEEE Trans. Ind. Electron., pp. 1–1, 2012. https://doi.org/10.1109/TIE.2012.219289410.1109/TIE.2012.2192894Open DOISearch in Google Scholar

[71] M. N. Uddin, W. Wang, and Z. R. Huang, “Modeling and Minimization of Speed Ripple of a Faulty Induction Motor With Broken Rotor Bars,” IEEE Trans. Ind. Appl., vol. 46, no. 6, pp. 2243–2250, Nov. 2010. https://doi.org/10.1109/TIA.2010.207047610.1109/TIA.2010.2070476Open DOISearch in Google Scholar

[72] W. W. Tan and H. Huo, “A Generic Neurofuzzy Model-Based Approach for Detecting Faults in Induction Motors,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1420–1427, Oct. 2005. https://doi.org/10.1109/TIE.2005.85565410.1109/TIE.2005.855654Open DOISearch in Google Scholar

eISSN:
2255-9159
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other